Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

In 2011 I joined Instituto Superior de Engenharia do Porto in the Bachelor’s degree in Electrical and Computer Engineering, and graduated in 2014.

Then, I started the master's degree in Electrical and Computer Engineering, branch of Autonomous Systems, having obtained the master's degree in 2016.

At the same time, I started my work at INESC TEC, where I have been part of the SUNNY project team, developing data processing techniques for hyperspectral cameras.

Interest
Topics
Details

Details

001
Publications

2018

Supervised classification for hyperspectral imaging in UAV maritime target detection

Authors
Freitas, S; Almeida, C; Silva, H; Almeida, J; Silva, E;

Publication
18th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018

Abstract
This paper addresses the use of a hyperspectral image system to detect vessels in maritime operational scenarios. The developed hyperspectral imaging classification methods are based on supervised approaches and allow to detect the presence of vessels using real hyperspectral data. We implemented two different methods for comparison purposes: SVM and SAM. The SVM method, which can be considered one of most utilized methods for image classification, was implemented using linear, RBF, sigmoid and polynomial kernels with PCA for dimensionality reduction, and compared with SAM using a two classes definition, namely vessel and water. The obtained results using real data collected from a UAV allow to conclude that the SVM approach is suitable for detecting the vessel presence in the water with a precision and recall rates favorable when compared to SAM. © 2018 IEEE.

2018

Hyperspectral Imaging for Real-Time Unmanned Aerial Vehicle Maritime Target Detection

Authors
Freitas, S; Silva, H; Almeida, J; Silva, E;

Publication
Journal of Intelligent and Robotic Systems: Theory and Applications

Abstract
This work address hyperspectral imaging systems use for maritime target detection using unmanned aerial vehicles. Specifically, by working in the creation of a hyperspectral real-time data processing system pipeline. We develop a boresight calibration method that allows to calibrate the position of the navigation sensor related to the camera imaging sensor, and improve substantially the accuracy of the target geo-reference. We also develop an unsupervised method for segmenting targets (boats) from their dominant background in real-time. We evaluated the performance of our proposed system for target detection in real-time with UAV flight data and present detection results comparing favorably our approach against other state-of- the-art method. © 2017 The Author(s)

2017

UAV cooperative perception for target detection and tracking in maritime environment

Authors
Amaral, G; Silva, H; Lopes, F; Ribeiro, JP; Freitas, S; Almeida, C; Martins, A; Almeida, J; Silva, E;

Publication
OCEANS 2017 - Aberdeen

Abstract

2016

UAV trials for multi-spectral imaging target detection and recognition in maritime environment

Authors
Silva, H; Almeida, JM; Lopes, F; Ribeiro, JP; Freitas, S; Amaral, G; Almeida, C; Martins, A; Silva, E;

Publication
OCEANS 2016 MTS/IEEE Monterey, OCE 2016

Abstract
This paper addresses the use of heterogeneous sensors for target detection and recognition in maritime environment. An Unmanned Aerial Vehicle payload was assembled using hyperspectral, infrared, electro-optical, AIS and INS information to collect synchronized sensor data with vessel ground-truth position for conducting air and sea trials. The data collected is used to develop automated robust methods for detect and recognize vessels based on their exogenous physical characteristics and their behaviour across time. Data Processing preliminary results are also presented. © 2016 IEEE.