Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Paulo Costa received the M.Sc. and PhD in Electrical and Computer Engineering on Faculty of Engineering of University of Porto, Portugal in 95 and 2000. He joined Faculty of Engineering of University of Porto in 1992, and currently he is a Professor in the Electrical Engineering Department. He is also a senior researcher in Centre for Robotics in Industry and Intelligent Systems group of the INESC-TEC (Institute for Systems and Computer Engineering of Porto, Portugal). He has published more than a hundred papers in international scientific journals and conference proceedings. In addition, he participated in many autonomous mobile robotics competitions. Moreover, his research interests are in the field of robotics and automation: simulation, path planning, artificial vision, mobile robot localization and navigation, obstacle avoidance and perception. He participated in some national, International and H2020 funded projects such as PRODUTECH SIF, ScalABLE4.0, CARLoS and PNEUMA.

Interest
Topics
Details

Details

  • Name

    Paulo José Costa
  • Role

    Senior Researcher
  • Since

    01st June 2009
011
Publications

2025

Nonlinear Control of Mecanum-Wheeled Robots Applying H8 Controller

Authors
Chellal, AA; Braun, J; Lima, J; Goncalves, J; Valente, A; Costa, P;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Mecanum wheeled mobile robots have become relevant due to their excellent maneuverability, enabling omnidirectional motion in constrained environments as a requirement in industrial automation, logistics, and service robotics. This paper addresses a low-level controller based on the H-Infinity (H-infinity) control method for a four-wheel Mecanum mobile robot. The proposed controller ensures stability and performance despite model uncertainties and external disturbances. The dynamic model of the robot was developed and introduced in MATLAB to generate the controller. Further, the controller's performance is validated and compared to a traditional PID controller using the SimTwo simulator, a realistic physics-based simulator with dynamics of rigid bodies incorporating non-linearities such as motor dynamics and friction effects. The preliminary simulation results show that the H-infinity reached a time-independent Euclidean error of 0.0091 m, compared to 0.0154 m error for the PID in trajectory tracking. Demonstrating that the H-infinity controller handles nonlinear dynamics and disturbances, ensuring precise trajectory tracking and improved system performance. This research validates the proposed approach for advanced control of Mecanum wheeled robots.

2025

Integrating Multimodal Perception into Ground Mobile Robots

Authors
Sousa, RB; Sobreira, HM; Martins, JG; Costa, PG; Silva, MF; Moreira, AP;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Multimodal perception systems enhance the robustness and adaptability of autonomous mobile robots by integrating heterogeneous sensor modalities, improving long-term localisation and mapping in dynamic environments and human-robot interaction. Current mobile platforms often focus on specific sensor configurations and prioritise cost-effectiveness, possibly limiting the flexibility of the user to extend the original robots further. This paper presents a methodology to integrate multimodal perception into a ground mobile platform, incorporating wheel odometry, 2D laser scanners, 3D Light Detection and Ranging (LiDAR), and RGBD cameras. The methodology describes the electronics design to power devices, firmware, computation and networking architecture aspects, and mechanical mounting for the sensory system based on 3D printing, laser cutting, and bending metal sheet processes. Experiments demonstrate the usage of the revised platform in 2D and 3D localisation and mapping and pallet pocket estimation applications. All the documentation and designs are accessible in a public repository.

2025

Performance Comparison Between Position Controllers for a Robotic Arm Manipulator

Authors
Braun, J; Chellal, AA; Lima, J; Pinto, VH; Pereira, AI; Costa, P;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
This paper compares five PID controller architectures for robotic manipulator position control, addressing the challenge of maintaining performance under varying inertial loads while providing accessible implementations for research and education. The five PID controller architectures for a three degrees-of-freedom SCARA manipulator position control are a basic Proportional-Derivative (PD), PD with Feed-Forward (FF), Parallel PD-PI-FF, Cascade PD-PI-FF, and Cascade PD-PI-FF with dead zone (DZ) compensation. The controllers were evaluated under varying inertial loads to assess robustness, extending beyond previous work's idealized conditions. Results show advanced configurations reduced errors by up to 64% compared to the baseline PD, with Parallel-FF achieving optimal dynamic performance and Cascade-FF-DZ excelling in steady-state control. The Feed-Forward addition enhanced tracking performance, while DZ compensation effectively eliminated limit cycles. The work provides open-source implementations and simulation environments, supporting research reproducibility and educational applications in robotics control.

2024

Enhancing Forest Fire Detection and Monitoring Through Satellite Image Recognition: A Comparative Analysis of Classification Algorithms Using Sentinel-2 Data

Authors
Brito, T; Pereira, AI; Costa, P; Lima, J;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023

Abstract
Worldwide, forests have been harassed by fire in recent years. Either by human intervention or other reasons, the history of the burned area is increasing considerably, harming fauna and flora. It is essential to detect an early ignition for fire-fighting authorities can act quickly, decreasing the impact of forest damage impacts. The proposed system aims to improve nature monitoring and improve the existing surveillance systems through satellite image recognition. The soil recognition via satellite images can determine the sensor modules' best position and provide crucial input information for artificial intelligence-based systems. For this, satellite images from the Sentinel-2 program are used to generate forest density maps as updated as possible. Four classification algorithms make the Tree Cover Density (TCD) map, consisting of the Gaussian Mixture Model (GMM), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), which identify zones by training known regions. The results demonstrate a comparison between the algorithms through their performance in recognizing the forest, grass, pavement, and water areas by Sentinel-2 images.

2024

Energy Efficiency Analysis of Differential and Omnidirectional Robotic Platforms: A Comparative Study

Authors
Chellal, AA; Braun, J; Bonzatto, L Jr; Faria, M; Kalbermatter, RB; Gonçalves, J; Costa, P; Lima, J;

Publication
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 1, CLAWAR 2023

Abstract
As robots have limited power sources. Energy optimization is essential to ensure an extension for their operating periods without needing to be recharged, thus maximizing their uptime and minimizing their running costs. This paper compares the energy consumption of different mobile robotic platforms, including differential, omnidirectional 3-wheel, omnidirectional 4-wheel, and Mecanum platforms. The comparison is based on the RobotAtFactory 4.0 competition that typically takes place during the Portuguese Robotics Open. The energy consumption from the batteries for each platform is recorded and compared. The experiments were conducted in a validated simulation environment with dynamic and friction models to ensure that the platforms operated at similar speeds and accelerations and through a 5200 mAh battery simulation. Overall, this study provides valuable information on the energy consumption of different mobile robotic platforms. Among other findings, differential robots are the most energy-efficient robots, while 4-wheel omnidirectional robots may offer a good balance between energy efficiency and maneuverability.

Supervised
thesis

2023

Data fusion and smart sensors for advanced autonomous robotics

Author
João Afonso Braun Neto

Institution
UP-FEUP

2023

Legged-Wheeled Robot Locomotion with Variable Stiffness Joints

Author
João Pedro Ribeiro Moreira

Institution
UP-FEUP

2023

Localization of Mobile Robots Using Optical Flow Sensors and Sensor Fusion

Author
Eduardo Passos Vila-Chã

Institution
UP-FEUP

2023

Protótipos de robots móveis com diferentes configurações de locomoção

Author
Gonçalo Rendeiro Brochado Garganta

Institution
UP-FEUP

2023

Collaborative System of Wildfire Detection and Risk Estimation Using Multiple Intelligent Wireless Sensors Networks

Author
Thadeu Vinícius de Brito Pupato

Institution
UP-FEUP