Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Brief Biographical History: 1994 concluded the BSc degree in Electrical Engineering, Institute if Engineering of Coimbra, Polytechnic Institute of Coimbra, Portugal. 1996 concluded the Licenciatura degree in Electrical and Computer Engineering, Faculty of Engineering, the University of Porto, Portugal. 1999 concluded the MSc degree in Electrical and Computer Engineering, Faculty of Engineering, the University of Porto, Portugal. 2006 concluded the Ph.D. degree in Electrical Engineering, Faculty of Engineering, the University of Trás-dos-Montes e Alto Douro, Portugal.

Interest
Topics
Details

Details

Publications

2022

Inspection Application in an Industrial Environment with Collaborative Robots

Authors
Magalhaes, P; Ferreira, N;

Publication
Automation

Abstract
In this study, we analyze the potential of collaborative robotics in automated quality inspections in the industry. The development of a solution integrating an industrial vision system allowed evaluating the performance of collaborative robots in a real case. The use of these tools allows reducing quality defects as well as costs in the manufacturing process. In this system, image processing methods use resources based on depth and surface measurements with high precision. The system fully processes a panel, observing the state of the surface to detect any potential defect in the panels produced to increase the quality of production.

2022

Robotic Manipulation in the Ceramic Industry

Authors
Torres, R; Ferreira, N;

Publication
ELECTRONICS

Abstract
Robotic manipulation, an area inside the field of industrial automation and robotics, consists of using a robotic arm to guide and grasp a desired object through actuators such as a vacuum or fingers, among others. Some objects, such as fragile ceramic pieces, require special attention to the force and the gripping method exerted on them. For this purpose, two grippers were developed, where one of them is a rotary vacuum gripper and the other is an impact gripper with three fingers, each one equipped with a load sensor capable of evaluating the values of load exerted by the grip actuators onto the object to be manipulated. The vacuum gripper was developed for the purpose of glazing a coffee saucer and the gripper with three fingers was developed for the purpose of polishing a coffee cup. Being that the impact gripper with sensorial feedback reacts to the excess and lack of grip force exerted, both these grippers were developed with success, handling with ease the ceramic pieces proposed.

2021

Cloud-based framework for robot operation in hospital environments

Authors
Fonseca Ferreira, NM; Boaventura Cunha, J;

Publication
Lecture Notes in Electrical Engineering

Abstract
The robotics field is widely used in the industrial domain, but nowadays several other domains could also take advantage of it. This interdisciplinary branch of engineering requires the use of human interfaces, efficient communication systems, high storage and processing capabilities, among other issues, to perform complex tasks. This paper aims to propose a cloud-based framework platform for robot operation in a hospital environment, addressing some challenges, such as communications security and processing/storage features. The recent developments in the artificial intelligence field and cloud resources sharing are allowing the penetration of robots in unstructured environments. However, some new challenges and solutions need to be tested in real environments. Our main contribution is to decrease the time-consumption related to processing and storage costs, associated with the physical processing resources of the robots. Also, the proposed methods provide an increase of the processing variables that are not yet present in the physical resources, such as in the case of robots with limited processing time or storage capabilities. This paper presents a platform based on Cloud Computing with services to support processing, storage and analytics applied to hospital environments. The proposed platform enables to achieve a decrease in the time-consumption, especially when it is intended to retrieve information about all robot activities. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

Control of bio-inspired multi-robots through gestures using convolutional neural networks in simulated environment

Authors
Saraiva, AA; Santos, DBS; Fonseca Ferreira, NM; Boaventura Cunha, J;

Publication
Lecture Notes in Electrical Engineering

Abstract
In this paper the comparison between three convolutional neural networks, used for the control of bio-inspired multi-robots in a simulated environment, is performed through manual gestures captured in real time by a webcam. The neural networks are: VGG19, GoogLeNet and Alexnet. For the training of networks and control of robots, six gestures were used, each gesture corresponding to one action, collective and individual actions were defined, the simulation contains four bio-inspired robots. In this work the performance of the networks in the classification of gestures to control robots is compared. They proved to be efficient in the classification and control of agents, with Alexnet achieving an accuracy of 98.33%, VGG19 98.06% e Googlelenet 96.94%. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2020

Electroencephalography applied compression algorithms qualitative analysis

Authors
Saraiva, AA; de Jesus Castro, FMD; Nascimento, RC; de Melo, RT; Moura Sousa, JVM; Valente, A; Fonseca Ferreira, NMF;

Publication
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION

Abstract
The objective of this work is study, implementation and evaluation of compression techniques used in bioelectrical signals, applied to electroencephalography. For that, the fundamental concepts of Fast Walsh Hadamard Transform (FWHT), the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT), in essence, the mathematical models were studied. In these systems, the applicability and principles of operation were considered the Peak Signal to Noise Ratio (PSNR), Signal to Noise Ratio (SNR), Mean Absolute Error (MAE) and mean squared error. Later, it is proposed the implementation of the compression algorithms. For the implementation of the techniques, computational tools of tests were developed, and for the purposes of validation and comparison of the results were used, with the appropriate adaptations, and described in the work, being these among the most recognised in terms of evaluation of signal quality. Finally, we present the results and the conclusions, where we sought a compromise of the implementations between the estimated percentage of DCT and the level of degradation of the signal provided by the compression application. In this sense, it was verified that they presented satisfactory results.