Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm currently a researcher at INESCTEC in Centre for Robotics and Autonomous Systems (CRAS) where I work mainly in the maritime area. My main scientific interests areas are autonomous systems, embedded systems and human-machine interaction.

Details

Details

  • Name

    Nuno Dias
  • Role

    Researcher
  • Since

    03rd October 2011
018
Publications

2023

Automatic characterisation of Dansgaard-Oeschger events in palaeoclimate ice records

Authors
Barbosa, S; Silva, ME; Dias, N; Rousseau, D;

Publication

Abstract
Greenland ice core records display abrupt transitions, designated as Dansgaard-Oeschger (DO) events, characterised by episodes of rapid warming (typically decades) followed by a slower cooling. The identification of abrupt transitions is hindered by the typical low resolution and small size of paleoclimate records, and their significant temporal variability. Furthermore, the amplitude and duration of the DO events varies substantially along the last glacial period, which further hinders the objective identification of abrupt transitions from ice core records Automatic, purely data-driven methods, have the potential to foster the identification of abrupt transitions in palaeoclimate time series in an objective way, complementing the traditional identification of transitions by visual inspection of the time series.In this study we apply an algorithmic time series method, the Matrix Profile approach, to the analysis of the NGRIP Greenland ice core record, focusing on:- the ability of the method to retrieve in an automatic way abrupt transitions, by comparing the anomalies identified by the matrix profile method with the expert-based identification of DO events;- the characterisation of DO events, by classifying DO events in terms of shape and identifying events with similar warming/cooling temporal patternThe results for the NGRIP time series show that the matrix profile approach struggles to retrieve all the abrupt transitions that are identified by experts as DO events, the main limitation arising from the diversity in length of DO events and the method’s dependence on fixed-size sub-sequences within the time series. However, the matrix profile method is able to characterise the similarity of shape patterns between DO events in an objective and consistent way.

2023

Precipitation-Driven Gamma Radiation Enhancement Over the Atlantic Ocean

Authors
Barbosa, S; Dias, N; Almeida, C; Silva, G; Ferreira, A; Camilo, A; Silva, E;

Publication
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES

Abstract
Gamma radiation over the Atlantic Ocean was measured continuously from January to May 2020 by a NaI(Tl) detector installed on board the Portuguese navy's ship NRP Sagres. Enhancements in the gamma radiation values are identified automatically by an algorithm for detection of anomalies in mean and variance as well as by visual inspection. The anomalies are typically +50% above the background level and relatively rare events (similar to<10% of the days). All the detected anomalies are associated with simultaneous precipitation events, consistent with the wet deposition of scavenged radionuclides. The enhancements are detected in the open ocean even at large distances (+500 km) from the nearest coastline. Back trajectories reveal that half of these events are associated with air masses experiencing continental land influences, but the other half do not display evidence of recent land contact. The enhancements in gamma radiation very far from land and with no evidence of continental fetch from back trajectories are difficult to explain as resulting only from radionuclides with a terrestrial source such as radon and its progeny. Further investigation and additional measurements are needed to improve understanding on the sources of ambient radioactivity in the open ocean and assess whether gamma radiation in the marine environment is influenced not only by radionuclides of terrestrial origin, but also cosmogenic radionuclides, like Beryllium-7, formed in the upper atmosphere but with the ability to be transported downward and serve as a tracer of the aerosols to which it attaches. Plain Language Summary Radioactive elements such as the noble gas radon and those produced by its radioactive decay are naturally present in the environment and used as tracers of atmospheric transport and composition. In particular, the noble gas radon, being inert and of predominantly terrestrial origin, is used to identify pristine marine air masses with no land contamination. Precipitation over land typically brings radon from the atmosphere to the surface, enhancing gamma radiation on the ground, but such enhancements have not been identified before nor expected over the ocean due to the low amount of radon typical of marine air masses. Here we report, for the first time, gamma radiation enhancements associated with precipitation in the oceanic environment, using measurements performed over the Atlantic Ocean in a campaign onboard the Portuguese navy ship NRP Sagres.

2023

Temporal variability of gamma radiation and aerosol concentration over the North Atlantic ocean

Authors
Dias, N; Amaral, G; Almeida, C; Ferreira, A; Camilo, A; Silva, E; Barbosa, S;

Publication

Abstract
&lt;p&gt;Gamma radiation measured over the ocean is mainly due to airborne radionuclides, as gamma emission by radon degassing from the ocean is negligible. Airborne gamma-emitting elements include radon progeny (Pb-2114, Bi-214, Pb-210) and cosmogenic radionuclides such as Be-7. Radon progeny attaches readily to aerosols, thus the fate of gamma-emitting radon progeny, after its formation by radioactive decay from radon, is expected to be closely linked to that of aerosols.&lt;/p&gt; &lt;p&gt;Gamma radiation measurements over the Atlantic Ocean were made on board the ship-rigged sailing ship NRP Sagres in the framework of project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer). The measurements were performed continuously with a NaI(Tl) scintillator counting all gamma rays from 475 keV to 3 MeV.&amp;#160;&amp;#160;&lt;/p&gt; &lt;p&gt;The counts from the sensor were recorded every 1 second into a computer system which had his time reference corrected by a GNSS pulse per second (PPS) signal. The GNSS was also used to precisely position the ship. The measurements were performed over the Atlantic ocean from January to May 2020, along the ship&amp;#8217;s round trip from Lisboa - Cape Verde &amp;#8211; Rio de Janeiro &amp;#8211; Buenos Aires &amp;#8211; Cape Town &amp;#8211; Cape Verde - Lisboa.&lt;/p&gt; &lt;p&gt;The results show that the gamma radiation time series displays considerable higher counts and larger variability in January compared to the remaining period. Reanalysis data also indicate higher aerosol concentration. This work investigates in detail the association between the temporal evolution of the gamma radiation measurements obtained from the SAIL campaign over the Atlantic Ocean and co-located total aerosol concentration at 550 nm obtained every 3 hours from EAC4(ECMWF Atmospheric Composition Reanalysis 4) data.&lt;/p&gt;

2022

An holistic monitoring system for measurement of the atmospheric electric field over the ocean - the SAIL campaign

Authors
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Lima, L; Silva, I; Martins, A; Almeida, J; Camilo, M; Silva, E;

Publication
OCEANS 2022

Abstract
The atmospheric electric field is a key characteristic of the Earth system. Despite its relevance, oceanic measurements of the atmospheric electric field are scarce, as typically oceanic measurements tend to be focused on ocean properties rather than on the atmosphere above. This motivated the set-up of an innovative campaign on board the sail ship NRP Sagres focused on the measurement of the atmospheric electric field in the marine boundary layer. This paper describes the monitoring system that was developed to measure the atmospheric electric field during the planned circumnavigation expedition of the sail ship NRP Sagres.

2022

Feedfirst: Intelligent monitoring system for indoor aquaculture tanks

Authors
Teixeira, B; Lima, AP; Pinho, C; Viegas, D; Dias, N; Silva, H; Almeida, J;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
The Feedfirst Intelligent Monitoring System is a novel tool for intelligent monitoring of fish nurseries in aquaculture scenarios, mainly focusing on monitoring three essential items: water quality control, biomass estimation, and automated feeding. The system is based on machine vision techniques for fish larvae population size detection, and larvae biomass estimation is monitored through size measurement. We also show that the perception-actuation loop in automated fish tanks can be closed by using the vision system output to influence feeding procedures. The proposed solution was tested in a real tank in an aquaculture setting with real-time performance and logging capabilities.