Details
Name
José RuelaCluster
Networked Intelligent SystemsRole
Affiliated ResearcherSince
01st January 1985
Nationality
PortugalCentre
Telecommunications and MultimediaContacts
+351222094299
jose.ruela@inesctec.pt
2022
Authors
Queiros, R; Almeida, EN; Fontes, H; Ruela, J; Campos, R;
Publication
2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022)
Abstract
The increasing complexity of recent Wi-Fi amendments is making optimal Rate Adaptation (RA) a challenge. The use of classic algorithms or heuristic models to address RA is becoming unfeasible due to the large combination of configuration parameters along with the variability of the wireless channel. We propose a simple Deep Reinforcement Learning approach for the automatic RA in Wi-Fi networks, named Data-driven Algorithm for Rate Adaptation (DARA). DARA is standard-compliant. It dynamically adjusts the Wi-Fi Modulation and Coding Scheme (MCS) solely based on the observation of the Signal-to-Noise Ratio (SNR) of the received frames at the transmitter. Our simulation results show that DARA achieves higher throughput when compared with Minstrel High Throughput (HT)
2021
Authors
Almeida, EN; Coelho, A; Ruela, J; Campos, R; Ricardo, M;
Publication
AD HOC NETWORKS
Abstract
Aerial networks, composed of Unmanned Aerial Vehicles (UAVs) acting as Wi-Fi access points or cellular base stations, are emerging as an interesting solution to provide on-demand wireless connectivity to users, when there is no network infrastructure available, or to enhance the network capacity. This article proposes a traffic aware topology control solution for aerial networks that holistically combines the placement of UAVs with a predictive and centralized routing protocol. The synergy created by the combination of the UAV placement and routing solutions allows the aerial network to seamlessly update its topology according to the users' traffic demand, whilst minimizing the disruption caused by the movement of the UAVs. As a result, the Quality of Service (QoS) provided to the users is improved. The components of the proposed solution are described and evaluated in this article by means of simulation and an experimental testbed. The results show that the QoS provided to the users is significantly improved when compared to the corresponding baseline solutions.
2021
Authors
Lamela, V; Fontes, H; Ruela, J; Ricardo, M; Campos, R;
Publication
WNS3 2021: 2021 Workshop on ns-3, Virtual Event, USA
Abstract
Today, wireless networks are operating in increasingly complex environments, impacting the evaluation and validation of new networking solutions. Simulation, although fully controllable and easily reproducible, depends on simplified physical layer and channel models, which often produce optimistic results. Experimentation is also influenced by external random phenomena and limited testbed scale and availability, resulting in hardly repeatable and reproducible results. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, TS is not compatible with scenarios where Multiple-In-Multiple-Out (MIMO) is used. This is especially relevant since ns-3 assumes perfectly independent MIMO radio streams. In this paper, we introduce the Trace-based Wi-Fi Station Manager Model, which is capable of reproducing the Rate Adaptation of past Wi-Fi experiments, including the number of effective radio streams used. To validate the proposed model, the network throughput was measured in different experiments performed in the w-iLab.t testbed, considering Single-In-Single-Out (SISO) and MIMO operation using IEEE 802.11a/n/ac standards. The experimental results were then compared with the network throughput achieved using the improved TS and Pure Simulation (PS) approaches, validating the new proposed model and confirming its relevance to reproduce experiments previously executed in real environments. © 2021 ACM.
2020
Authors
Cruz, R; Fontes, H; Ruela, J; Ricardo, M; Campos, R;
Publication
Proceedings of the 2020 Workshop on ns-3, WNS3 2020, Gaithersburg, MD, USA, June 17-18, 2020
Abstract
In wireless networking R&D we typically depend on simulation and experimentation to evaluate and validate new networking solutions. While simulations allow full control over the scenario conditions, real-world experiments are influenced by external random phenomena and may produce hardly repeatable and reproducible results, impacting the validation of the solution under evaluation. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, the TS approach is not compatible with scenarios where the radio spectrum is shared with concurrent networks, as it does not reproduce their channel occupancy. In this paper, we introduce the InterferencePropagationLossModel and a modified MacLow to allow reproducing the channel occupancy observed in past experiments using Wi-Fi. To validate the proposed models, the network throughput was measured in different experiments performed in the w-iLab.t testbed, controlling the channel occupancy introduced by concurrent networks. The experimental results were then compared with the network throughput achieved using the improved TS approach, the legacy TS approach, and pure simulation, validating the new proposed models and confirming their relevance to reproduce experiments previously executed in real environments. © 2020 ACM.
2019
Authors
Coelho, A; Almeida, EN; Ruela, J; Campos, R; Ricardo, M;
Publication
2019 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC)
Abstract
The growing demand for broadband communications anytime, anywhere has paved the way to the usage of Unmanned Aerial Vehicles (UAVs) for providing Internet access in areas without network infrastructure and enhancing the performance of existing networks. However, the usage of Flying Multi-hop Networks (FMNs) in such scenarios brings up significant challenges concerning network routing, in order to permanently provide the Quality of Service expected by the users. The problem is exacerbated in crowded events, where the FMN may be formed by many UAVs to address the traffic demand, causing interflow interference within the FMN. Typically, estimating inter-flow interference is not straightforward and requires the exchange of probe packets, thus increasing network overhead. The main contribution of this paper is an inter-flow interference-aware routing metric, named I2R, designed for centralized routing in FMNs with controllable topology. I2R does not require any control packets and enables the configuration of paths with minimal Euclidean distance formed by UAVs with the lowest number of neighbors in carrier-sense range, thus minimizing inter-flow interference in the FMN. Simulation results show the I2R superior performance, with significant gains in terms of throughput and end-to-end delay, when compared with state of the art routing metrics.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.