Details
Name
José Alexandre GonçalvesRole
External Research CollaboratorSince
01st June 2009
Nationality
PortugalCentre
Robotics in Industry and Intelligent SystemsContacts
+351220413317
jose.a.goncalves@inesctec.pt
2025
Authors
Chellal, AA; Braun, J; Lima, J; Gonçalves, J; Valente, A; Costa, P;
Publication
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2025, Funchal, Portugal, April 2-3, 2025
Abstract
The growing demand for highly maneuverable mobile robots today drives Mecanum-wheeled robot popularity in industrial automation, logistics, and service robotics. These omnidirectional robots have features that enable them to run appropriately in conditions requiring exact motion control. Nevertheless, low-level control techniques for these robots are still challenging to apply because of their nonlinear dynamics and external perturbations, including wheel friction and slip-page.
2025
Authors
Alvarez M.; Brancalião L.; Carneiro J.; Costa P.; Coelho J.; Gonçalves J.;
Publication
Lecture Notes in Electrical Engineering
Abstract
One of the industry’s most common applications of lasers is engraving, which is generally performed on flat surfaces. However, there are many situations where the object to be engraved has an unevenly curved geometry. In those cases, the light power density will be different along the surface for a fixed head, leading to a poor engraving result. This work deals with this problem by designing a robotic application capable of detecting variations on the object surface and automatically creating a trajectory to engrave on it correctly. This was made possible through a robotic manipulator, a time-of-flight distance sensor, and a data processing algorithm over the measured data. Obtained results were acquired using a custom-made test rig and validated by delivering consistent engraving results on irregular surface shapes.
2024
Authors
Klein, LC; Chellal, AA; Grilo, V; Braun, J; Gonçalves, J; Pacheco, MF; Fernandes, FP; Monteiro, FC; Lima, J;
Publication
SENSORS
Abstract
The accurate measurement of joint angles during patient rehabilitation is crucial for informed decision making by physiotherapists. Presently, visual inspection stands as one of the prevalent methods for angle assessment. Although it could appear the most straightforward way to assess the angles, it presents a problem related to the high susceptibility to error in the angle estimation. In light of this, this study investigates the possibility of using a new approach to angle calculation: a hybrid approach leveraging both a camera and LiDAR technology, merging image data with point cloud information. This method employs AI-driven techniques to identify the individual and their joints, utilizing the cloud-point data for angle computation. The tests, considering different exercises with different perspectives and distances, showed a slight improvement compared to using YOLO v7 for angle calculation. However, the improvement comes with higher system costs when compared with other image-based approaches due to the necessity of equipment such as LiDAR and a loss of fluidity during the exercise performance. Therefore, the cost-benefit of the proposed approach could be questionable. Nonetheless, the results hint at a promising field for further exploration and the potential viability of using the proposed methodology.
2024
Authors
Klein, LC; Chellal, AA; Grilo, V; Gonçalves, J; Pacheco, MF; Fernandes, FP; Monteiro, FC; Lima, J;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Angle assessment is crucial in rehabilitation and significantly influences physiotherapists' decision-making. Although visual inspection is commonly used, it is known to be approximate. This work aims to be a preliminary study about using the AI image-based to assess upper limb joint angles. Two main frameworks were evaluated: MediaPipe and Yolo v7. The study was performed with 28 participants performing four upper limb movements. The results showed that Yolo v7 achieved greater estimation accuracy than Mediapipe, with MAEs of around 5 degrees and 17 degrees, respectively. However, even with better results, Yolo v7 showed some limitations, including the point of detection in only a 2D plane, the higher computational power required to enable detection, and the difficulty of performing movements requiring more than one degree of Freedom (DOF). Nevertheless, this study highlights the detection capabilities of AI approaches, showing be a promising approach for measuring angles in rehabilitation activities, representing a cost-effective and easy-to-implement solution.
2024
Authors
Chellal, AA; Braun, J; Bonzatto, L Jr; Faria, M; Kalbermatter, RB; Gonçalves, J; Costa, P; Lima, J;
Publication
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 1, CLAWAR 2023
Abstract
As robots have limited power sources. Energy optimization is essential to ensure an extension for their operating periods without needing to be recharged, thus maximizing their uptime and minimizing their running costs. This paper compares the energy consumption of different mobile robotic platforms, including differential, omnidirectional 3-wheel, omnidirectional 4-wheel, and Mecanum platforms. The comparison is based on the RobotAtFactory 4.0 competition that typically takes place during the Portuguese Robotics Open. The energy consumption from the batteries for each platform is recorded and compared. The experiments were conducted in a validated simulation environment with dynamic and friction models to ensure that the platforms operated at similar speeds and accelerations and through a 5200 mAh battery simulation. Overall, this study provides valuable information on the energy consumption of different mobile robotic platforms. Among other findings, differential robots are the most energy-efficient robots, while 4-wheel omnidirectional robots may offer a good balance between energy efficiency and maneuverability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.