Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Filipe Neves dos Santos was born in São Paio de Oleiros, Portugal, in 1979. He olds a Licenciatura (5-year degree) in Electrical and Computer Engineering in 2003 from Instituto Superior de Engenharia do Porto (ISEP), a M.Sc. in Electrical and Computer Engineering from the Instituto Superior Técnico (IST) da Universidade Técnica de Lisboa, in 2007, and received the PhD degree in Electrical and Computer Engineering at the Faculdade de Engenharia (FEUP), Universidade do Porto, Portugal, in 2014. His professional passion is to develop autonomous robots and machinery to solve real problems, desires and needs of our society and to contribute for self-sustainability and fairness of the global economy. Actually, He is focused in developing and researching robotic solutions for agriculture and forestry sector, where is required a higher efficiency for our world self-sustainability. Considering his closer regional reality, he have setup the goal to promote agricultural robotic based projects and develop robots that can operate fully autonomously and safely in steep-slope scenarios, which is a common reality of North of Portugal and in other large number of world regions. As so, he is interested in explore and develop robots for specific agricultural and forestall tasks such as: monitoring (by ground), spraying, logistics, pruning, and selective harvesting. The successfully execution of these task is largely dependent on the robustness of specific robotic systems, such as: - Visual Perception; - Navigation (localization, mapping and path planning); and - Manipulation and end tools. For that reason Visual Perception and Navigation are his main research fields inside of robotics research. His formation in Electronics and Computer Engineer (Bachelor (old-one of 5 years) MSc (sensor fusion), PhD (semantic mapping) ), experience of 4 years as entrepreneur (technological startup), 8 year as robotics researcher, 5 years as manager (in supporting tasks in a family enterprise), and 6 year as electronics technician will help him to successfully contribute for the agricultural and forestall robotics future.

Interest
Topics
Details

Details

031
Publications

2022

Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data

Authors
Aguiar, AS; dos Santos, FN; Sobreira, H; Boaventura Cunha, J; Sousa, AJ;

Publication
FRONTIERS IN ROBOTICS AND AI

Abstract
Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research and development of localization techniques are essential to boost agricultural robotics. To address this issue, we propose an algorithm called VineSLAM suitable for localization and mapping in agriculture. This approach uses both point- and semiplane-features extracted from 3D LiDAR data to map the environment and localize the robot using a novel Particle Filter that considers both feature modalities. The numeric stability of the algorithm was tested using simulated data. The proposed methodology proved to be suitable to localize a robot using only three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared against a state-of-the-art approach considering three real-world experiments in a woody-crop vineyard. Results show that our approach can localize the robot with precision even in long and symmetric vineyard corridors outperforming the state-of-the-art algorithm in this context.

2022

Unscrambling spectral interference and matrix effects in Vitis vinifera Vis-NIR spectroscopy: Towards analytical grade ‘in vivo’ sugars and acids quantification

Authors
Martins, RC; Barroso, TG; Jorge, P; Cunha, M; Santos, F;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract

2022

Benchmark of Deep Learning and a Proposed HSV Colour Space Models for the Detection and Classification of Greenhouse Tomato

Authors
Moreira, G; Magalhaes, SA; Pinho, T; dos Santos, FN; Cunha, M;

Publication
AGRONOMY-BASEL

Abstract
The harvesting operation is a recurring task in the production of any crop, thus making it an excellent candidate for automation. In protected horticulture, one of the crops with high added value is tomatoes. However, its robotic harvesting is still far from maturity. That said, the development of an accurate fruit detection system is a crucial step towards achieving fully automated robotic harvesting. Deep Learning (DL) and detection frameworks like Single Shot MultiBox Detector (SSD) or You Only Look Once (YOLO) are more robust and accurate alternatives with better response to highly complex scenarios. The use of DL can be easily used to detect tomatoes, but when their classification is intended, the task becomes harsh, demanding a huge amount of data. Therefore, this paper proposes the use of DL models (SSD MobileNet v2 and YOLOv4) to efficiently detect the tomatoes and compare those systems with a proposed histogram-based HSV colour space model to classify each tomato and determine its ripening stage, through two image datasets acquired. Regarding detection, both models obtained promising results, with the YOLOv4 model standing out with an F1-Score of 85.81%. For classification task the YOLOv4 was again the best model with an Macro F1-Score of 74.16%. The HSV colour space model outperformed the SSD MobileNet v2 model, obtaining results similar to the YOLOv4 model, with a Balanced Accuracy of 68.10%.

2022

Collision avoidance considering iterative Bézier based approach for steep slope terrains

Authors
Santos, LC; Santos, FN; Valente, A; Sobreira, H; Sarmento, J; Petry, M;

Publication
IEEE ACCESS

Abstract

2022

SCARA Self Posture Recognition Using a Monocular Camera

Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Filipe, V;

Publication
IEEE ACCESS

Abstract

Supervised
thesis

2020

Grasping and manipulation with active perception for open-field agricultural robotics

Author
Sandro Augusto Costa Magalhães

Institution
UP-FEUP

2020

Advanced 2.5D Path Planning for agricultural robots

Author
Luís Carlos Feliz Santos

Institution
UTAD

2020

Localization and Mapping based on Semantic and Multi-Layer Maps Concepts

Author
André Silva Pinto de Aguiar

Institution
UP-FEUP

2018

Sistema de Inteligência Artificial para Jogo Interativo PiTank

Author
André Filipe de Domingues e Silva

Institution
UP-FEUP

2018

Otimização do parqueamento de aeronaves em hangares de manutenção

Author
Bruno Manuel João Estevinho

Institution
UP-FEUP