Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Duarte Dias is a Biomedical Engineer at INESC TEC and the Coordination Assistant of the Center for Biomedical Engineering (CBER). He is also an invited teacher at the Faculty of Engineering of University of Porto. He has a transversal expertise in wearable health devices, human physiology, hardware and firmware development, signal processing and data analysis. He is co-author in more than ten scientific publications, including a first-author review in “Sensors” related with Wearable Health Devices with more than 100 citations. His interest for entrepreneurship and technology transfer lead him to support and be involved in the creation of two spin-offs at INESC TEC.

Interest
Topics
Details

Details

011
Publications

2021

Changes in heart rate variability after transcranial direct current stimulation in patients with refractory epilepsy

Authors
Lopes, EM; Van Rafelghem, L; Dias, D; Nunes, MC; Hordt, M; Noachtar, S; Kaufmann, E; Cunha, JPS;

Publication
International IEEE/EMBS Conference on Neural Engineering, NER

Abstract
Cathodal transcranial direct current stimulation (c-tDCS) is a non-invasive option for treatment of refractory epilepsy. However, it is still unknown whether this therapy has a positive stabilizing effect on the vegetative function of these patients. Heart Rate Variability (HRV) is considered an efficient tool to monitor the cardiac autonomic system, which has been correlated with the risk of Sudden Unexpected Death in Epilepsy (SUDEP). In this study, changes in HRV are investigated after c-tDCS of six patients (34.50 ± 11.10 years) with refractory epilepsy, which have been selected at the University Hospital, LMU Munich. Patients were categorized as responders (n=2), non-responders (n=3) and uncategorized (n=1). We analyzed 24 hours of electrophysiological data recorded before and after treatment, and computed HRV metrics (AVNN, SDNN, RMSD, pNN20, pNN50, LH/HF, 0V, IV, 2LV, 2UV, SD1 and SD2). All patients revealed a change in almost all HRV metrics post stimulation. Grouped all patients, there was a significant (p < 0.05) change in RMSSD, pNN50, SD1 and LH/HF. For responders there was an increase in all time domain and non-linear metrics, which was not seen for non-responders. These results suggest that tDCS exerts significant changes in cardiovascular autonomic system in patients with refractory epilepsy. HRV metrics may also serve as biomarkers of the response to tDCS stimulation. A larger dataset is being gathered for further analysis. © 2021 IEEE.

2020

IHandU: A novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery

Authors
Murias Lopes, E; Vilas Boas, MD; Dias, D; Rosas, MJ; Vaz, R; Silva Cunha, JP;

Publication
Sensors (Switzerland)

Abstract
Deep brain stimulation (DBS) surgery is the gold standard therapeutic intervention in Parkinson’s disease (PD) with motor complications, notwithstanding drug therapy. In the intraoperative evaluation of DBS’s efficacy, neurologists impose a passive wrist flexion movement and qualitatively describe the perceived decrease in rigidity under different stimulation parameters and electrode positions. To tackle this subjectivity, we designed a wearable device to quantitatively evaluate the wrist rigidity changes during the neurosurgery procedure, supporting physicians in decision-making when setting the stimulation parameters and reducing surgery time. This system comprises a gyroscope sensor embedded in a textile band for patient’s hand, communicating to a smartphone via Bluetooth and has been evaluated on three datasets, showing an average accuracy of 80%. In this work, we present a system that has seen four iterations since 2015, improving on accuracy, usability and reliability. We aim to review the work done so far, outlining the iHandU system evolution, as well as the main challenges, lessons learned, and future steps to improve it. We also introduce the last version (iHandU 4.0), currently used in DBS surgeries at São João Hospital in Portugal. © 2020 by the authors.

2020

SnapKi—An Inertial Easy-to-Adapt Wearable Textile Device for Movement Quantification of Neurological Patients

Authors
Oliveira, A; Dias, D; Lopes, EM; Vilas Boas, MD; Silva Cunha, JPS;

Publication
Sensors

Abstract
The development of wearable health systems has been the focus of many researchers who aim to find solutions in healthcare. Additionally, the large potential of textiles to integrate electronics, together with the comfort and usability they provide, has contributed to the development of smart garments in this area. In the field of neurological disorders with motor impairment, clinicians look for wearable devices that may provide quantification of movement symptoms. Neurological disorders affect different motion abilities thus requiring different needs in movement quantification. With this background we designed and developed an inertial textile-embedded wearable device that is adaptable to different movement-disorders quantification requirements. This adaptative device is composed of a low-power 9-axis inertial unit, a customised textile band and a web and Android cross application used for data collection, debug and calibration. The textile band comprises a snap buttons system that allows the attachment of the inertial unit, as well as its connection with the analog sensors through conductive textile. The resulting system is easily adaptable for quantification of multiple motor symptoms in different parts of the body, such as rigidity, tremor and bradykinesia assessments, gait analysis, among others. In our project, the system was applied for a specific use-case of wrist rigidity quantification during Deep Brain Stimulation surgeries, showing its high versatility and receiving very positive feedback from patients and doctors.

2020

A Textile Embedded Wearable Device for Movement Disorders Quantification

Authors
Oliveira, A; Dias, D; Lopes, EM; Vilas Boas, MD; Cunha, JPS;

Publication
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

Abstract
Wearable devices have been showing promising results in a large range of applications: since industry, to entertainment and, in particular, healthcare. In the scope of movement disorders, wearable devices are being widely implemented for motor symptoms objective assessment. Currently, clinicians evaluate patients' motor symptoms resorting to subjective scales and visual perception, such as in Parkinson's Disease. The possibility to make use of wearable devices to quantify this disorder motor symptoms would bring an accurate follow-up on the disease progression, leading to more efficient treatments.Here we present a novel textile embedded low-power wearable device capable to be used in any scenario of movement disorders assessment due to its seamless, comfort and versatility. Regarding our research, it has already improved the setup of a wrist rigidity quantification system for Parkinson's Disease patients: the iHandU system. The wearable comprises a hardware sensing unit integrated in a textile band with an innovative design assuring higher comfort and easiness-to-use in movement disorders assessment. It enables to collect inertial data (9-axis) and has the possibility to integrate two analog sensors. A web platform was developed for data reading, visualization and recording. To ensure inertial data reliability, validation tests for the accelerometer and gyroscope sensors were conducted by comparison with its theoretical behavior, obtaining very good results. © 2020 IEEE.

2019

VitalResponder®: wearable wireless platform for vitals and body-area environment monitoring of first response teams

Authors
Cunha, JPS; Rodrigues, S; Dias, D; Brandão, P; Aguiar, A; Oliveira, I; Fernandes, JM; Maia, C; Tedim, AR; Barros, A; Azuaje, O; Soares, E; De La Torre, F;

Publication
Wearable Technologies and Wireless Body Sensor Networks for Healthcare

Abstract