Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Interest
Topics
Details

Details

002
Publications

2018

EVA a hybrid ROV/AUV for underwater mining operations support

Authors
Martins, A; Almeida, J; Almeida, C; Matias, B; Kapusniak, S; Silva, E;

Publication
2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018

Abstract
This paper presents EVA, a new concept for an hybrid ROV/AUV designed to support the underwater operation of an underwater mining machine, developed in the context of the European H2020 R&D ¡VAMOS! Project. This project is briefly presented, introducing the main components and concepts, providing the reader with clear picture of the operational scenario and allowing to understand better the functionality requirements of the support robotic vehicle developed. The design of EVA is detailed presented, addressing the mechanical design, hardware architecture, sensor system and navigation and control. The results of EVA both in water test tank, in the !VAMOS! Field trials in Lee Moor, UK, and in an harbor scenario are presented and discussed © 2018 IEEE

2018

?VAMOS! Underwater Mining Machine Navigation System

Authors
Almeida, J; Ferreira, A; Matias, B; Lomba, C; Martins, A; Silva, E;

Publication
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Abstract

2017

Underwater navigation sensors calibration in inland water spaces

Authors
Matias, B; Almeida, J; Ferreira, A; Martins, A; Ferreira, H; Silva, E;

Publication
OCEANS 2017 - Aberdeen

Abstract

2016

Air and underwater survey of water enclosed spaces for VAMOS! Project

Authors
Almeida, J; Ferreira, A; Matias, B; Dias, A; Martins, A; Silva, F; Oliveira, J; Sousa, P; Moreira, M; Miranda, T; Almeida, C; Silva, E;

Publication
OCEANS 2016 MTS/IEEE Monterey, OCE 2016

Abstract
This paper addresses a three-dimensional (3D) reconstruction of a flooded open pit mine with an autonomous surface vehicle (ASV) and unmanned aerial vehicle (UAV). The ROAZ USV and the Otus UAV were used to provide the underwater bathymetric map and aerial 3D reconstruction based from image data. This work was performed within the context of the European research project VAMOS with the objective of developing robotic tools for efficient underwater mining © 2016 IEEE.

2015

High-Accuracy Low-Cost RTK-GPS for an Unmannned Surface Vehicle

Authors
Matias, B; Oliveira, H; Almeida, J; Dias, A; Ferreira, H; Martins, A; Silva, E;

Publication
OCEANS 2015 - GENOVA

Abstract
This work presents a low cost RTK-GPS system for localization of unmanned surface vehicles. The system is based on the use of standard low cost L1 band receivers and in the RTKlib open source software library. Mission scenarios with multiple robotic vehicles are addressed as the ones envisioned in the ICARUS search and rescue case where the possibility of having a moving RTK base on a large USV and multiple smaller vehicles acting as rovers in a local communication network allows for local relative localization with high quality. The approach is validated in operational conditions with results presented for moving base scenario. The system was implemented in the SWIFT USV with the ROAZ autonomous surface vehicle acting as a moving base. This setup allows for the performing of a missions in a wider range of environments and applications such as precise 3D environment modeling in contained areas and multiple robot operations.