Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Full Professor at Industrial Engineering and Management, FEUP, and Porto Business School. Co-founder of LTPlabs (spin-off of INESC TEC and FEUP). Member of the board of Trustees ("conselho de curadores") of Fundação Belmiro de Azevedo

His main area of activity is Management Science/Operations Research. He develops and applies advanced analytical models and methods to help make better decisions, solving managerial problems in various domains (manufacturing, health, retail and mobility), with a special focus on Operations Management.

Advanced Management Programme, INSEAD. PhD in Industrial Engineering and Management, UP. Degree in Management and Industrial Engineering (5 years degree), FEUP. Former researcher at Operations Research Center of Massachusetts Institute of Technology – MIT/ORC. Certified Analytics Professional from The Institute for Operations Research and the Management Sciences.

Former Member of the Board at INESC TEC Technology and Science. Former Vice-Academic Director of IBM Center for Advanced Studies Portugal (IBM-CAS). Co-founder of start-up Adjust Consulting (that was acquired by Glintt HealthCare).

Interest
Topics
Details

Details

023
Publications

2022

A comprehensive framework and literature review of supplier selection under different purchasing strategies

Authors
Saputro, TE; Figueira, G; Almada Lobo, B;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
Supplier selection has received substantial consideration in the literature since it is considered one of the key levers contributing to a firm's success. Selecting the right suppliers for different product items requires an appropriate problem framing and a suitable approach. Despite the vast literature on this topic, there is not a comprehensive framework underlying the supplier selection process that addresses those concerns. This paper formalizes a framework that provides guidance on how supplier selection should be formulated and approached for different types of items segmented in Kraljic's portfolio matrix and production policies. The framework derives from a thorough literature review, which explores the main dimensions in supplier selection, including sourcing strategy, decision scope and environment, selection criteria, and solution approaches. 326 papers, published from 2000 to 2021, were reviewed for said purpose. The results indicate that supplier selection regarding items with a high purchasing importance should lead to holistic selection criteria. In addition, items comprising a high complexity of supply and production activities should require integrated selection and different sources of uncertainty associated with decision scope and environment, respectively, to solve it, as well as hybrid approaches. There are still many research opportunities in the supplier selection area, particularly in the integrated selection problems and hybrid solution methods, as well as in the risk mitigation, sustainability goals, and new technology adoption.

2022

The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics

Authors
Neves Moreira, F; Almada Lobo, B; Guimaraes, L; Amorim, P;

Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW

Abstract

2022

On the impact of adjusting the minimum life on receipt (MLOR) criterion in food supply chains

Authors
Santos, MJ; Martins, S; Amorim, P; Almada Lobo, B;

Publication
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
The Minimum Life on Receipt (MLOR) is a widely used rule that imposes the minimum remaining age a food product must be delivered by the producer to the retailer. In practice, this rule is set by retailers and it is fixed, around 2/3 of the age of products regardless their shelf life. In this work, we study single and two echelon make-to-stock production-inventory problems for fixed-lifetime perishables. Mixed-integer linear optimization models are developed considering the MLOR rule both as decision variable and fixed parameter. When the MLOR rule is a variable, it is considered either a sole decision of the producer or a collaborative decision between retailer and producer. The goal of this work is to compare the supply chain performance considering this innovative setting of optimal MLOR (as a variable) against the traditional setting of fixed MLOR rule. The computational results suggest that allowing flexible MLOR rules according to the shelf life of products and the operational requirements of the producer benefit both entities in the supply chain. In particular, reducing the MLOR requirement in up to 12% does not interfere substantially with the average freshness of products arriving to the retailer, but reduces extensively surplus/waste generation at the producer while keeping a small amount of waste at the retailer.

2021

A green lateral collaborative problem under different transportation strategies and profit allocation methods

Authors
Joa, M; Martins, S; Amorim, P; Almada Lobo, B;

Publication
JOURNAL OF CLEANER PRODUCTION

Abstract
Collaboration between companies in transportation problems seeks to reduce empty running of vehicles and to increase the use of vehicles' capacity. Motivated by a case study in the food supply chain, this paper examines a lateral collaboration between a leading retailer (LR), a third party logistics provider (3 PL) and different producers. Three collaborative strategies may be implemented simultaneously, namely pickup-delivery, collection and cross-docking. The collaborative pickup-delivery allows an entity to serve customers of another in the backhaul trips of the vehicles. The collaborative collection allows loads to be picked up at the producers in the backhauling routes of the LR and the 3 PL, instead of the traditional outsourcing. The collaborative cross-docking allows the producers to cross-dock their cargo at the depot of another entity, which is then consolidated and shipped with other loads, either in linehaul or backhaul routes. The collaborative problem is formulated with three different objective functions: minimizing total operational costs, minimizing total fuel consumption and minimizing operational and CO2 emissions costs. The synergy value of collaborative solutions is assessed in terms of costs and environmental impact. Three proportional allocation methods from the literature are used to distribute the collaborative gains among the entities, and their limitations and capabilities to attend fairness criteria are analyzed. Collaboration is able to reduce the global fuel consumption in 26% and the global operational costs in 28%, independently of the objective function used to model the problem. The collaborative pickup-delivery strategy outperforms the other two in the majority of instances under different objectives and parameter settings. The collaborative collection is favoured when the ordering loads from producers increase. The collaborative cross-docking tends to be implemented when the producers are located close to the depot of the 3 PL.

2021

Improving picking performance at a large retailer warehouse by combining probabilistic simulation, optimization, and discrete-event simulation

Authors
Amorim Lopes, M; Guimaraes, L; Alves, J; Almada Lobo, B;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Distribution warehouses are a critical part of supply chains, representing a nonnegligible share of the operating costs. This is especially true for unautomated, labor-intensive warehouses, partially due to time-consuming activities such as picking up items or traveling. Inventory categorization techniques, as well as zone storage assignment policies, may help in improving operations, but may also be short-sighted. This work presents a three-step methodology that uses probabilistic simulation, optimization, and event-based simulation (SOS) to analyze and experiment with layout and storage assignment policies to improve the picking performance. In the first stage, picking performance is estimated under different storage assignment policies and zone configurations using a probabilistic model. In the second stage, a mixed integer optimization model defines the overall warehouse layout by selecting the configuration and storage assignment policy for each zone. Finally, the optimized layout solution is tested under demand uncertainty in the third, final simulation phase, through a discrete-event simulation model. The SOS methodology was validated with three months of operational data from a large retailer's warehouse, successfully illustrating how it may be successfully used for improving the performance of a distribution warehouse.

Supervised
thesis

2021

Desenvolvimento de soluções energeticamente sustentáveis para ginásios

Author
Nuno Henrique Gaspar Pacheco

Institution
UTAD

2021

Application of growth hacking methods in the promotion of mobile applications

Author
João Nuno Alvim Leite Terra Figueiredo

Institution
UP-FEUP

2021

Business Intelligence para caracterização de clientes com base no consumo de televisão

Author
Mariana da Costa Fong Vieira Gomes

Institution
UP-FEUP

2021

Using Business Intelligence to leverage field workforce capacity planning in Telco

Author
Salomé Pinto de Meneses Monteiro

Institution
UP-FEUP

2021

Automated Privacy-Preserving Strategies

Author
Tânia Margarida Marques Carvalho

Institution
UP-FCUP