Details
Name
André Filipe PintoRole
ResearcherSince
01st November 2017
Nationality
PortugalCentre
Robotics and Autonomous SystemsContacts
+351220413317
andre.f.pinto@inesctec.pt
2025
Authors
André Filipe Pinto; Nuno Alexandre Cruz; Bruno M. Ferreira; Salviano P. Soares; Vítor M. Filipe;
Publication
OCEANS 2025 - Great Lakes
Abstract
2025
Authors
Pacheco, FD; Pinto, AF; Maravalhas-Silva, J; Ferreira, BM; Cruz, NA;
Publication
OCEANS 2025 - Great Lakes
Abstract
2024
Authors
Pinto A.; Ferreira B.M.; Cruz N.; Soares S.P.; Cunha J.B.;
Publication
Oceans Conference Record (IEEE)
Abstract
In the present paper, we propose a control approach to perform docking of an autonomous surface vehicle (ASV) while avoiding surrounding obstacles. This control architecture is composed of two sequential controllers. The first outputs a feasible trajectory between the vessel's initial and target state while avoiding obstacles. This trajectory also minimizes the vehicle velocity while performing the maneuvers to increase the safety of onboard passengers. The second controller performs trajectory tracking while accounting for the actuator's physical limits (extreme actuation values and the rate of change). The method's performance is tested on simulation, as it enables a reliable ground truth method to validate the control architecture proposed.
2022
Authors
Pinto, AF; Cruz, NA; Ferreira, BM; Abreu, NM; Goncalves, CE; Villa, MP; Matos, AC; Honorio, LD; Westin, LG;
Publication
OCEANS 2022
Abstract
This paper describes a system designed to collect water samples, from the surface down to a configurable depth, and with configurable profiles of vertical velocity. The design was intended for the analysis of suspended sediments, therefore the sampling can integrate water flow for a given depth profile, or at a specific depth. The system is based on a catamaran-shaped platform, from which a towfish is lowered to collect the water samples. The use of a surface vehicle ensures a permanent link between the operator and the full system, allowing for a proper mission supervision. All components can be remotely controlled from the control station, or programmed for fully autonomous operation. Although the main intended use is for the analysis of suspended sediments in rivers, it can easily be extended to collect water samples in other water bodies.
2022
Authors
Martins, MS; Cruz, NA; Silva, A; Ferreira, B; Zabel, F; Matos, T; Jesus, SM; Pinto, A; Pereira, E; Matos, A; Faria, C; Tieppo, M; Goncalves, LM; Rocha, J; Faria, J;
Publication
2022 OCEANS HAMPTON ROADS
Abstract
As humanity progresses and globalization advances, humanized environment and associated systems increase in complexity and size. In earth systems, oceans represent an essential element of equalization and normal functioning. Ocean-atmospheric interactions are nowadays believed to be at the heart of all earth vital signs and climatic behaviours, and therefore are essential to accurate monitoring and understanding of earth systems. The work presented is a preliminary result of the K2D- Knowledge and Data from the Deep to Space, project which addresses the challenge of creating underwater network nodes to provide power and communication to land through the submarine fiber optic cable repeaters. The N2ODE system will consist of a set of subsystems that will allow continuous monitoring and interaction with fixed and mobile underwater devices.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.