Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

André Dias was born in Porto, Portugal 1980. He finished is lic. degree in Electrical and Electronic Engineering from ISEP Porto Polytechnic School in 2004. He pursue further studies and obtained his Master in Electronics and Computers Engineering, from IST University of Lisbon in 2008. In 2015 graduated (Phd) in Electronics and Computers Engineering, from IST University of Lisbon.
He currently is a professor at the School of Engineering (ISEP) of the Porto Polytechnic Institute (IPP) and senior researcher at the robotics and autonomous systems group of INESC TEC in Portugal, where he is project member in several international FP7, H2020 projects. He is the main author of several research publications in the domains of perception and mobile robotics applications.

Interest
Topics
Details

Details

  • Name

    André Dias
  • Role

    Senior Researcher
  • Since

    01st October 2011
017
Publications

2023

Automatic Detection of Corrosion in Large-Scale Industrial Buildings Based on Artificial Intelligence and Unmanned Aerial Vehicles

Authors
Lemos, R; Cabral, R; Ribeiro, D; Santos, R; Alves, V; Dias, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
In recent years, Artificial Intelligence (AI) provided essential tools to enhance the productivity of activities related to civil engineering, particularly in design, construction, and maintenance. In this framework, the present work proposes a novel AI computer vision methodology for automatically identifying the corrosion phenomenon on roofing systems of large-scale industrial buildings. The proposed method can be incorporated into computational packages for easier integration by the industry to enhance the inspection activities' performance. For this purpose, a dedicated image database with more than 8k high-resolution aerial images was developed for supervised training. An Unmanned Aerial Vehicle (UAV) was used to acquire remote georeferenced images safely and efficiently. The corrosion anomalies were manually annotated using a segmentation strategy summing up 18,381 instances. These anomalies were identified through instance segmentation using the Mask based Region-Convolution Neural Network (Mask R-CNN) framework adjusted to the created dataset. Some adjustments were performed to enhance the performance of the classification model, particularly defining an adequate input image size, data augmentation strategy, Intersection over a Union (IoU) threshold during training, and type of backbone network. The inferences show promising results, with correct detections even under complex backgrounds, poor illumination conditions, and instances of significantly reduced dimensions. Furthermore, in scenarios without a roofing system, the model proved reliable, not producing any false positive occurrences. The best model achieved metrics' values equal to 65.1% for the bounding box detection Average Precision (AP) and 59.2% for the mask AP, considering an IoU of 50%. Regarding classification metrics, the precision and recall were equal to 85.8% and 84.0%, respectively. The developed methodology proved to be extremely valuable for guiding infrastructure managers in taking physically informed decisions based on the real assets condition.

2023

GeoTec: A System for 3D Reconstruction in Underground Environment (Aveleiras Mine, Monastery of Tibães, NW Portugal)

Authors
Pires, A; Dias, A; Rodrigues, P; Silva, P; Santos, T; Oliveira, A; Ferreira, A; Almeida, J; Martins, A; Chaminé, I; Silva, E;

Publication
Advances in Science, Technology and Innovation

Abstract

2023

Autonomous UAV Landing Approach for Marine Operations

Authors
Moura, A; Antunes, J; Martins, JJ; Dias, A; Martins, A; Almeida, JM; Silva, E;

Publication
OCEANS 2023 - LIMERICK

Abstract
The use of autonomous vehicles in maritime operations is a technological challenge. In the particular case of autonomous aerial vehicles (UAVs), their application ranges from inspection and surveillance of offshore power plants, and marine life observation, to search and rescue missions. Manually landing UAVs onboard water vessels can be very challenging due to limited space onboard and wave agitation. This paper proposes an autonomous solution for the task of landing commercial multicopter UAVs with onboard cameras on water vessels, based on the detection of a custom landing platform with computer vision techniques. The autonomous landing behavior was tested in real conditions, using a research vessel at sea, where the UAV was able to detect, locate, and safely land on top of the developed landing platform.

2023

Simulation Environment for UAV Offshore Wind-Turbine Inspection

Authors
Oliveira, A; Dias, A; Santos, T; Rodrigues, P; Martins, A; Silva, E; Almeida, J;

Publication
OCEANS 2023 - LIMERICK

Abstract
Offshore wind farms are becoming the main alternative to fossil fuels and the future key to mitigating climate change by achieving energy sustainability. With favorable indicators in almost every environmental index, these structures operate under varying and dynamic environmental conditions, leading to efficiency losses and sudden failures. For these reasons, it's fundamental to promote the development of autonomous solutions to monitor the health condition of the construction parts, preventing structural damage and accidents. This paper introduces a new simulation environment for testing and training autonomous inspection techniques under a more realistic offshore wind farm scenario. Combining the Gazebo simulator with ROS, this framework can include multi-robots with different sensors to operate in a customizable simulation environment regarding some external elements (fog, wind, buoyancy...). The paper also presents a use case composed of a 3D LiDAR-based technique for autonomous wind turbine inspection with UAV, including point cloud clustering, model estimation, and the preliminary results under this simulation framework using a mixed environment (offshore simulation with a real UAV platform).

2023

Methodological insights from unmanned system technologies in a rock quarry environment and geomining heritage site: coupling LiDAR-based mapping and GIS geovisualisation techniques

Authors
Pires, A; Dias, A; Silva, P; Ferreira, A; Rodrigues, P; Santos, T; Oliveira, A; Freitas, L; Martins, A; Almeida, J; Silva, E; Chaminé, HI;

Publication
Arabian Journal of Geosciences

Abstract

Supervised
thesis

2022

The influence of cultures on how Brand Coolness is perceived

Author
Bernard Cabral Gama

Institution
UP-FEP

2022

Internacionalização das PME’s portuguesas do setor têxtil: uma abordagem na perspetiva do tripé estratégico e do cluster industrial

Author
Marta Sofia Pinheiro Carneiro

Institution
UP-FEP

2022

Os determinantes da exportação das empresas do setor mobiliário em Portugal

Author
Mariana da Costa Lopes de Carvalho

Institution
UP-FEP

2021

Sistema de Visão Termográfico para Veículos Autónomos Aéreos

Author
CARLOS MANUEL DE SOUSA FERRÁS

Institution
IPP-ISEP

2021

Graph-SLAM Approach for Indoor UAV Localization in Warehouse Logistics Applications

Author
JOSÉ FILIPE DA SILVA OLIVEIRA ANTUNES

Institution
IPP-ISEP