Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

André Dias was born in Porto, Portugal 1980. He finished is lic. degree in Electrical and Electronic Engineering from ISEP Porto Polytechnic School in 2004. He pursue further studies and obtained his Master in Electronics and Computers Engineering, from IST University of Lisbon in 2008. In 2015 graduated (Phd) in Electronics and Computers Engineering, from IST University of Lisbon.
He currently is a professor at the School of Engineering (ISEP) of the Porto Polytechnic Institute (IPP) and senior researcher at the robotics and autonomous systems group of INESC TEC in Portugal, where he is project member in several international FP7, H2020 projects. He is the main author of several research publications in the domains of perception and mobile robotics applications.

Interest
Topics
Details

Details

007
Publications

2019

ISEP/INESC TEC Aerial Robotics Team for Search and Rescue Operations at the euRathlon 2015

Authors
Sousa, P; Ferreira, A; Moreira, M; Santos, T; Martins, A; Dias, A; Almeida, J; Silva, E;

Publication
Journal of Intelligent and Robotic Systems: Theory and Applications

Abstract
This paper presents the results from search and rescue missions performed with the aerial robot OTUS in the the context of the ISEP/INESC TEC aerial robotics team participation on the euRathlon 2015 robotics competition. The multi-domain (land, sea and air) search and rescue scenario is described and technical solution adopted is presented with emphasis on the perception system. The calibration of the image based system is addressed. Results from the operational missions performed are also discussed. The aerial autonomous vehicle was able to successfully perform multiple tasks from the aerial reconnaissance and 3D mapping to the identification of leaking pipes, obstructed passages and missing workers. The system was validated a realistic operational scenario and won the Grand Challenge in cooperation with land and marine robotics partner teams. This challenge was the first time that a real time collaborative team of aerial, land and marine robots was deployed successfully in a search and rescue mission. © 2018 Springer Science+Business Media B.V., part of Springer Nature

2019

LiDAR-Based Real-Time Detection and Modeling of Power Lines for Unmanned Aerial Vehicles

Authors
Azevedo, F; Dias, A; Almeida, J; Oliveira, A; Ferreira, A; Santos, T; Martins, A; Silva, E;

Publication
Sensors

Abstract
The effective monitoring and maintenance of power lines are becoming increasingly important due to a global growing dependence on electricity. The costs and risks associated with the traditional foot patrol and helicopter-based inspections can be reduced by using UAVs with the appropriate sensors. However, this implies developing algorithms to make the power line inspection process reliable and autonomous. In order to overcome the limitations of visual methods in the presence of poor light and noisy backgrounds, we propose to address the problem of power line detection and modeling based on LiDAR. The PL 2 DM, Power Line LiDAR-based Detection and Modeling, is a novel approach to detect power lines. Its basis is a scan-by-scan adaptive neighbor minimalist comparison for all the points in a point cloud. The power line final model is obtained by matching and grouping several line segments, using their collinearity properties. Horizontally, the power lines are modeled as a straight line, and vertically as a catenary curve. Using a real dataset, the algorithm showed promising results both in terms of outputs and processing time, adding real-time object-based perception capabilities for other layers of processing.

2019

Development of an autonomous biosampler to capture in situ aquatic microbiomes

Authors
Ribeiro, H; Martins, A; Goncalves, M; Guedes, M; Tomasino, MP; Dias, N; Dias, A; Mucha, AP; Carvalho, MF; Almeida, CMR; Ramos, S; Almeida, JM; Silva, E; Magalhaes, C;

Publication
PLoS ONE

Abstract
The importance of planktonic microbial communities is well acknowledged, since they are fundamental for several natural processes of aquatic ecosystems. Microorganisms naturally control the flux of nutrients, and also degrade and recycle anthropogenic organic and inorganic contaminants. Nevertheless, climate change effects and/or the runoff of nutrients/ pollutants can affect the equilibrium of natural microbial communities influencing the occurrence of microbial pathogens and/or microbial toxin producers, which can compromise ecosystem environmental status. Therefore, improved microbial plankton monitoring is essential to better understand how these communities respond to environmental shifts. The study of marine microbial communities typically involves highly cost and time-consuming sampling procedures, which can limit the frequency of sampling and data availability. In this context, we developed and validated an in situ autonomous biosampler (IS-ABS) able to collect/concentrate in situ planktonic communities of different size fractions (targeting prokaryotes and unicellular eukaryotes) for posterior genomic, metagenomic, and/or transcriptomic analysis at a home laboratory. The IS-ABS field prototype is a small size and compact system able to operate up to 150 m depth. Water is pumped by a micropump (TCS MG2000) through a hydraulic circuit that allows in situ filtration of environmental water in one or more Sterivex filters placed in a filter cartridge. The IS-ABS also includes an application to program sampling definitions, allowing pre-setting configuration of the sampling. The efficiency of the IS-ABS was tested against traditional laboratory filtration standardized protocols. Results showed a good performance in terms of DNA recovery, as well as prokaryotic (16S rDNA) and eukaryotic (18S rDNA) community diversity analysis, using either methodologies. The IS-ABS automates the process of collecting environmental DNA, and is suitable for integration in water observation systems, what will contribute to substantially increase biological surveillances. Also, the use of highly sensitive genomic approaches allows a further study of the diversity and functions of whole or specific microbial communities. © 2019 Ribeiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

2018

Control-law for oil spill mitigation with an autonomous surface vehicle

Authors
Pedrosa, D; Dias, A; Martins, A; Almeida, J; Silva, E;

Publication
2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018

Abstract
Oil spill incidents in the sea or harbors occur with some regularity during exploration, production, and transport of petroleum products. In order to mitigate the impact of the oil spill in the marine life, immediate, safety, effective and eco-friendly actions must be taken. Autonomous vehicles can assume an important contribution by establishing a cooperative and coordinated intervention. This paper presents the development of a path planning control-law methods for an autonomous surface vehicle (ASV) being able to contour the oil spill while is deploying microorganisms and nutrients (bioremediation) capable of mitigating and contain the oil spill spread with the collaboration of a UAV vehicle. An oil spill simulation scenario was developed in Gazebo to support the evaluation of the cooperative actions between the ASV and UAV and to infer the ASV path planning for each one of the proposed control-law methods. © 2018 IEEE.

2018

Positioning. Navigation and Awareness of the !VAMOS! Underwater Robotic Mining System

Authors
Almeida, J; Martins, A; Almeida, C; Dias, A; Matias, B; Ferreira, A; Jorge, P; Martins, R; Bleier, M; Nuechter, A; Pidgeon, J; Kapusniak, S; Silva, E;

Publication
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Abstract

Supervised
thesis

2017

Análise e Proposta de Melhorias do Pipeline de processamento do wiiGO

Author
PEDRO MANUEL DA SILVA RIBEIRO

Institution
IPP-ISEP

2017

Inspecção Visual de Isoladores Eléctricos - Abordagem baseada em Deep Learning

Author
DANIEL DOS SANTOS OLIVEIRA

Institution
IPP-ISEP

2017

SISTEMA AUTÓNOMO DE MONITORIZAÇÃO SUBAQUÁTICA COM VARIAÇÃO DE FLUTU- ABILIDADE PARA O PROJECTO MARINEYE

Author
MARCO MOTA GONÇALVES

Institution
IPP-ISEP

2017

Sistema de Apoio ao Processo de Aterragem Autónoma de um VTOL

Author
MIGUEL MORIM MOREIRA

Institution
IPP-ISEP

2016

Planeamento de Trajetória para Operações de Busca e Salvamento com UAVs

Author
TIAGO SANTOS FERNANDES

Institution
IPP-ISEP