Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

I am a marine biologist with recent work experience in Biomedical Engineering. After finishing the PhD in Animal Science my research interest shifted towards innovative medical therapies that will enable the body to repair, replace, restore and regenerate damaged or diseased cells, tissues and organs. During three years, I worked on the development of artificial intelligent matrices inspired on the tissues of echinoderms.  Later I focused my research on immunomodulatory biomaterials for cardiovascular devices. Currently, I returned to my origins as a marine biologist by managing projects in the field of marine robotics.

Interest
Topics
Details

Details

001
Publications

2016

Phytoplankton composition of the water and gastrointestinal tract of the mussel Diplodon enno (Ortmann, 1921) from Sao Francisco river (Bahia, Brazil)

Authors
Alves, T; Lima, P; Lima, GMS; Cunha, MCC; Ferreira, S; Domingues, B; Machado, J;

Publication
BRAZILIAN JOURNAL OF BIOLOGY

Abstract
The knowledge on diet composition of the freshwater mussel Diplodon enno (Ortmann) would aid in its culture and propagation allowing, this way, the replacement of natural endangered populations in Brazil. Microalgae are the main food source for captive mussels and unionids have displayed an ability to sort algae based on the cellular characteristics prior to ingestion. The main objective of the present work is to analyze the phytoplankton composition of the water from and of the gastrointestinal contents of the mussel D. enno, as an initial step for development of a suitable rearing diet. Therefore, water samples and bivalve specimens were collected from S. Francisco River, city of Paulo Afonso, Bahia, Brazil. The microalgal composition found in water and stomach/gut content samples was very diverse being represented by the following divisions: Cyanophyta, Chlorophyta, Dinophyta and Heterokontophyta (Diatoms). Concerning the relative abundance of microalgae divisions, it is possible to state, for the water and gastrointestinal contents, that Cyanophyta represents 15% and 14%, Chlorophyta 54% in both, Heterokontophyta 31% and 27% and Dinophyta 0% and 5%, respectively. According to the Brazilian CETESB criteria for phytoplankton species classification, 50% of Cyanophyta and 15% of Chlorophyta species observed in the water samples were classified as "very frequent", as were 68% of Heterokontophyta and 33% of Chlorophyta species in the gut/stomach tract samples. Focusing at a species level, although in the water only Coelastrum sp. and Chroococcus sp. were observed in 100% and 75% of the samples, respectively, in the gastrointestinal tract the species Staurastrum sp., Aulacoseira sp., Scenedesmus sp. and Fragilaria crotonensis occurred in 80% to 100% of the samples. The present results showed that D. enno feeds not only on small chlorophytes microalgae, due to their convenient size that facilitates higher feeding rates, but also on large size diatoms, due to a possible nutritional advantage for the bivalves. Thus, a diet composed by large diatoms and small chlorophytes microalgae may be considered as the most reasonable for the maintenance of D. enno populations.

2016

Phytoplankton composition of the water and gastrointestinal tract of the mussel Diplodon enno (Ortmann, 1921) from São Francisco river (Bahia, Brazil) [Composição fitoplanctônica da água e do trato gastrointestinal do molusco Diplodon enno (Ortmann) do rio São Francisco (BA - Brasil)]

Authors
Alves, T; Lima, P; Lima, GMS; Cunha, MCC; Ferreira, S; Domingues, B; Machado, J;

Publication
Brazilian Journal of Biology

Abstract
The knowledge on diet composition of the freshwater mussel Diplodon enno (Ortmann) would aid in its culture and propagation allowing, this way, the replacement of natural endangered populations in Brazil. Microalgae are the main food source for captive mussels and unionids have displayed an ability to sort algae based on the cellular characteristics prior to ingestion. The main objective of the present work is to analyze the phytoplankton composition of the water from and of the gastrointestinal contents of the mussel D. enno, as an initial step for development of a suitable rearing diet. Therefore, water samples and bivalve specimens were collected from S. Francisco River, city of Paulo Afonso, Bahia, Brazil. The microalgal composition found in water and stomach/gut content samples was very diverse being represented by the following divisions: Cyanophyta, Chlorophyta, Dinophyta and Heterokontophyta (Diatoms). Concerning the relative abundance of microalgae divisions, it is possible to state, for the water and gastrointestinal contents, that Cyanophyta represents 15% and 14%, Chlorophyta 54% in both, Heterokontophyta 31% and 27% and Dinophyta 0% and 5%, respectively. According to the Brazilian CETESB criteria for phytoplankton species classification, 50% of Cyanophyta and 15% of Chlorophyta species observed in the water samples were classified as “very frequent”, as were 68% of Heterokontophyta and 33% of Chlorophyta species in the gut/stomach tract samples. Focusing at a species level, although in the water only Coelastrum sp. and Chroococcus sp. were observed in 100% and 75% of the samples, respectively, in the gastrointestinal tract the species Staurastrum sp., Aulacoseira sp., Scenedesmus sp. and Fragilaria crotonensis occurred in 80% to 100% of the samples. The present results showed that D. enno feeds not only on small chlorophytes microalgae, due to their convenient size that facilitates higher feeding rates, but also on large size diatoms, due to a possible nutritional advantage for the bivalves. Thus, a diet composed by large diatoms and small chlorophytes microalgae may be considered as the most reasonable for the maintenance of D. enno populations.

2014

Selective feeding by Anodonta cygnea (Linnaeus, 1771): The effects of seasonal changes and nutritional demands

Authors
Lopes Lima, M; Lima, P; Hinzmann, M; Rocha, A; Machado, J;

Publication
LIMNOLOGICA

Abstract
Many animal species, during their life cycles, can select specific food elements that meet the special and unique metabolic needs of crucial stages such as growth, gonad maturation or larvae production and brooding. The objective of this study was to analyze the seasonal phytoplankton composition in the stomach contents of the freshwater mussel Anodonta cygnea in order to determine whether it was capable of selecting food seasonally and which were its preferences. Specimens and water samples were collected monthly from Barrinha de Mira lagoon in the northwest of Portugal during one year. From the microalgae composition found in the water and stomach content samples, Chlorophyta presented a clear predominance, followed by Cryptophyta and Bacillariophyta in water samples, and Bacillariophyta and Cyanobacteria in stomach contents. Although mussels ingested algae in a pattern very similar to its abundance in the natural habitat, in some periods specific groups were preferred even if they were present in very low concentrations in the environment. Thus, these animals are capable of selecting food by its specific characteristics and this selectivity may be associated with its physiological cycle, mainly with the reproductive cycle. Namely, the large relative abundance (ratio stomach/environment) peak of blue green algae that co-occur with gamete development covering two other smaller peaks: one of Bacillariophyta that co-occurs with gametogenesis restart and the other of Chlorophyta at the end. In addition, a significant peak of Cryptophyta co-occurs with growth and glochidia brooding periods.

2013

The smart connective tissue of echinoderms: A materializing promise for biotech applications

Authors
Barbaglio, A; Tricarico, S; Di Benedetto, C; Fassini, D; Lima, AP; Ribeiro, AR; Ribeiro, CC; Sugni, M; Bonasoro, F; Wilkie, I; Barbosa, M; Candia Carnevali, MD;

Publication
Cahiers de Biologie Marine

Abstract
Echinoderm Mutable Collagenous Tissues (MCT5) undergo nervously mediated, drastic and reversible changes in their passive mechanical properties. MCT mutability is involved in autotomy, posture maintenance and motility, and, as a consequence, it influences all aspects of echinoderm biology (nutrition, reproduction, habitat selection, self-defense and predatory behavior) representing a key-factor for the ecological success of the phylum. Besides this, MCT performance represents a topic of remarkable interest for many different applied fields. A biomimetic research route looks at MCTs as a source of inspiration for the development of smart and innovative biomaterials with great potential for in vitro and in vivo applications when controlled and reversible plasticization and/or stiffening of the extracellular matrix is required. The MIMESIS (Marine Invertebrate Models & Engineered Substrates for Innovative bio-Scaffolds) project has been developed within this scientific context. The selected echinoderm model is the common sea urchin Paracentrotus lividus. This project is based on a multidisciplinary approach combining functional biology with biomaterial engineering. A brief review of recent morphological, biomolecular, biomechanical and biochemical results on P lividus MCTs are here presented in a biotechnological perspective, taking into account also a promising application regarding the use of MCT-derived substrata for cell culture studies.