Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

My name is Ana Maria Mendonça and I am currently Associate Professor at the Department of Electrical and Computer Engineering (DEEC) of the Faculty of Engineering of the University of Porto (FEUP), where I got my PhD in 1994. I was a researcher at the Institute for Biomedical Engineering (INEB) until 2014, but since 2015 I am a senior researcher at INESC TEC.

For several years, I was a member of the Executive council of DEEC and at present I am the Vice-Dean of FEUP. At INEB, I was a member of the Board of Directors and afterwards President of the Board. I was an elected member of the pedagogical council of FEUP and currently I am also a member of the scientific council. I was the Director of the Master in Biomedical Engineering from 2009 to 2014 and I am a member of the scientific committee of the Doctoral Programme in Biomedical Engineering.

I have been collaborating as a research and also as responsible in several research projects, mostly dedicated to the development of image analysis and classification methodologies aiming at extracting essential information from medical images in order to support the diagnosis process. Past work has been mostly devoted to three main areas: retinal pathologies, lung diseases and genetic disorders, but ongoing work is mainly focused on the development of Computer-Aided Diagnosis systems in Ophthalmology and Radiology.

Interest
Topics
Details

Details

005
Publications

2020

Conventional Filtering Versus U-Net Based Models for Pulmonary Nodule Segmentation in CT Images

Authors
Rocha, J; Cunha, A; Mendonca, AM;

Publication
Journal of Medical Systems

Abstract

2020

Segmentation of Pulmonary Nodules in CT Images Using the Sliding Band Filter

Authors
Rocha, J; Cunha, A; Mendonça, AM;

Publication
IFMBE Proceedings

Abstract
This paper proposes a conventional approach for pulmonary nodule segmentation, that uses the Sliding Band Filter to estimate the center of the nodule, and consequently the filter’s support points, matching the initial border coordinates. This preliminary segmentation is then refined to try to include mainly the nodular area, and no other regions (e.g. vessels and pleural wall). The algorithm was tested on 2653 nodules from the LIDC database and achieved a Dice score of 0.663, yielding similar results to the ground truth reference, and thus being a promising tool to promote early lung cancer screening and improve nodule characterization. © 2020, Springer Nature Switzerland AG.

2020

IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge

Authors
Porwal, P; Pachade, S; Kokare, M; Deshmukh, G; Son, J; Bae, W; Liu, LH; Wang, J; Liu, XH; Gao, LX; Wu, TB; Xiao, J; Wang, FY; Yin, BC; Wang, YZ; Danala, G; He, LS; Choi, YH; Lee, YC; Jung, SH; Li, ZY; Sui, XD; Wu, JY; Li, XL; Zhou, T; Toth, J; Bara, A; Kori, A; Chennamsetty, SS; Safwan, M; Alex, V; Lyu, XZ; Cheng, L; Chu, QH; Li, PC; Ji, X; Zhang, SY; Shen, YX; Dai, L; Saha, O; Sathish, R; Melo, T; Araujo, T; Harangi, B; Sheng, B; Fang, RG; Sheet, D; Hajdu, A; Zheng, YJ; Mendonca, AM; Zhang, ST; Campilho, A; Zheng, B; Shen, D; Giancardo, L; Quellec, G; Meriaudeau, F;

Publication
Medical Image Analysis

Abstract

2020

DR|GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images

Authors
Araújo, T; Aresta, G; Mendonça, L; Penas, S; Maia, C; Carneiro, Â; Mendonça, AM; Campilho, A;

Publication
Medical Image Analysis

Abstract

2019

An unsupervised metaheuristic search approach for segmentation and volume measurement of pulmonary nodules in lung CT scans

Authors
Shakibapour, E; Cunha, A; Aresta, G; Mendonca, AM; Campilho, A;

Publication
Expert Systems with Applications

Abstract
This paper proposes a new methodology to automatically segment and measure the volume of pulmonary nodules in lung computed tomography (CT) scans. Estimating the malignancy likelihood of a pulmonary nodule based on lesion characteristics motivated the development of an unsupervised pulmonary nodule segmentation and volume measurement as a preliminary stage for pulmonary nodule characterization. The idea is to optimally cluster a set of feature vectors composed by intensity and shape-related features in a given feature data space extracted from a pre-detected nodule. For that purpose, a metaheuristic search based on evolutionary computation is used for clustering the corresponding feature vectors. The proposed method is simple, unsupervised and is able to segment different types of nodules in terms of location and texture without the need for any manual annotation. We validate the proposed segmentation and volume measurement on the Lung Image Database Consortium and Image Database Resource Initiative – LIDC-IDRI dataset. The first dataset is a group of 705 solid and sub-solid (assessed as part-solid and non-solid) nodules located in different regions of the lungs, and the second, more challenging, is a group of 59 sub-solid nodules. The average Dice scores of 82.35% and 71.05% for the two datasets show the good performance of the segmentation proposal. Comparisons with previous state-of-the-art techniques also show acceptable and comparable segmentation results. The volumes of the segmented nodules are measured via ellipsoid approximation. The correlation and statistical significance between the measured volumes of the segmented nodules and the ground-truth are obtained by Pearson correlation coefficient value, obtaining an R-value = 92.16% with a significance level of 5%. © 2018 Elsevier Ltd

Supervised
thesis

2019

Segmentation of Pulmonary Nodules in CT images

Author
Joana Maria Neves da Rocha

Institution
UP-FEUP

2019

Lung nodule characterization and follow-up assessment

Author
Daniela Marisa da Silva Campos

Institution
UP-FEUP

2019

Diabetic Retinopathy Grading in Color Eye Fundus Images

Author
Teresa Manuel Sá Finisterra Araújo

Institution
UP-FEUP

2018

Design, Implementation and Evaluation of Model-Driven Spreadsheets

Author
Jorge Cunha Mendes

Institution
UM

2017

On Serendipity in the Digital Medium: Towards a Framework for Valuable Unpredictability in Interaction Design

Author
Ricardo Manuel Coelho de Melo

Institution
UP-FBAUP