2022
Authors
Brancaliao, L; Goncalves, J; Conde, MA; Costa, P;
Publication
SENSORS
Abstract
This paper presents a systematic mapping literature review about the mobile robotics competitions that took place over the last few decades in order to obtain an overview of the main objectives, target public, challenges, technologies used and final application area to show how these competitions have been contributing to education. In the review we found 673 papers from 5 different databases and at the end of the process, 75 papers were classified to extract all the relevant information using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. More than 50 mobile robotics competitions were found and it was possible to analyze most of the competitions in detail in order to answer the research questions, finding the main goals, target public, challenges, technologies and application area, mainly in education.
2022
Authors
Sousa, RB; Petry, MR; Costa, PG; Moreira, AP;
Publication
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
Odometry calibration adjusts the kinematic parameters or directly the robot's model to improve the wheeled odometry accuracy. The existent literature considers in the calibration procedure only one steering geometry (differential drive, Ackerman/tricycle, or omnidirectional). Our method, the OptiOdom calibration algorithm, generalizes the odometry calibration problem. It is developed an optimization-based approach that uses the improved Resilient Propagation without weight-backtracking (iRprop-) for estimating the kinematic parameters using only the position data of the robot. Even though a calibration path is suggested to be used in the calibration procedure, the OptiOdom method is not path-specific. In the experiments performed, the OptiOdom was tested using four different robots on a square, arbitrary, and suggested calibration paths. The OptiTrack motion capture system was used as a ground-truth. Overall, the use of OptiOdom led to improvements in the odometry accuracy (in terms of maximum distance and absolute orientation errors over the path) over the existent literature while being a generalized approach to the odometry calibration problem. The OptiOdom and the methods from the literature implemented in the article are available in GitHub as an open-source repository.
2022
Authors
Lima, J; Pinto, VH; Moreira, AP; Costa, P;
Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
Motion control is an important task in several areas, such as robotics where the angular position and speed should be acquired, usually with encoders. For slow angular speeds, an error is introduced spoiling the measurement. In this paper there will be proposed two new methodologies, that when combined allow to increase the precision whereas reducing the error, even on transient velocities. The two methodologies Variable Acquisition Window and a Quadrature Phase Compensation are addressed and combined simultaneously. A real implementation of the proposed algorithms is performed on a real hardware, with a DC motor and a low resolution encoder based on hall effect. The results validate the proposed approach since the errors are reduced compared with the standard Quadrature Encoder Reading.
2022
Authors
Pinto, VH; Soares, IN; Ribeiro, F; Lima, J; Goncalves, J; Costa, P;
Publication
CONTROLO 2022
Abstract
Legged-wheeled locomotion systems are a particular case of robot types that can be characterized by an increase in the degrees of freedom. To increase safety and robustness in the performance of industrial robots, while reducing the risk of damage to the robot joints and injure to human operators, the use of non-rigid joints is growing in the literature and in the industry. Realistic simulators are tools capable of detecting rigid bodies interactions through physics engines. This paper presents the simulation model of a hybrid legged-wheeled robot, built in the SimTwo simulator. The proposed algorithms for path following control are detailed, along with the tests performed to them. These showed that the errors in linear paths are at most 1 cm. For circular paths, the maximum error is 3 cm.
2022
Authors
Brancaliao, L; Conde, MA; Costa, P; Goncalves, J;
Publication
CONTROLO 2022
Abstract
In this paper it is presented the stochastic modeling of a time of flight sensor, to be applied in a mobile robotics application. The sensor was configured to provide data at a frequency 30 Hz, obtaining a tradeoff between reactiveness and accuracy. The sensor data was acquired using a microcontroller development board, being the sensor moved with a manipulator, in order to assure repeatability and accuracy in the data acquisition process. The sensor was modeled having in mind the targets color, ranging from black to white for the working range, its variance, standard deviation, offset, means and errors measures were estimated.
2022
Authors
Braun, J; Oliveira, A; Berger, GS; Lima, J; Pereira, AI; Costa, P;
Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
Robotics competitions encourage the development of solutions to new challenges that emerge in sync with the rise of Industry 4.0. In this context, robotic simulators are employed to facilitate the development of these solutions by disseminating knowledge in robotics, Education 4.0, and STEM. The RobotAtFactory 4.0 competition arises to promote improvements in industrial challenges related to autonomous robots. The official organization provides the simulation scene of the competition through the open-source SimTwo simulator. This paper aims to integrate the SiwTwo simulator with the Robot Operating System (ROS) middleware by developing a framework. This integration facilitates the design of robotic systems since ROS has a vast repository of packages that address common problems in robotics. Thus, competitors can use this framework to develop their solutions through ROS, allowing the simulated and real systems to be integrated.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.