Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Maria Inês Carvalho

2019

Estimation of atmospheric turbulence parameters from Shack-Hartmann wavefront sensor measurements

Authors
Andrade, PP; Garcia, PJV; Correia, CM; Kolb, J; Carvalho, MI;

Publication
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Abstract
The estimation of atmospheric turbulence parameters is of relevance for the following: (a) site evaluation and characterization; (b) prediction of the point spread function; (c) live assessment of error budgets and optimization of adaptive optics performance; (d) optimization of fringe trackers for long baseline optical interferometry. The ubiquitous deployment of Shack-Hartmann wavefront sensors in large telescopes makes them central for atmospheric turbulence parameter estimation via adaptive optics telemetry. Several methods for the estimation of the Fried parameter and outer scale have been developed, most of which are based on the fitting of Zernike polynomial coefficient variances reconstructed from the telemetry. The non-orthogonality of Zernike polynomial derivatives introduces modal cross coupling, which affects the variances. Furthermore, the finite resolution of the sensor introduces aliasing. In this article the impact of these effects on atmospheric turbulence parameter estimation is addressed with simulations. It is found that cross-coupling is the dominant bias. An iterative algorithm to overcome it is presented. Simulations are conducted for typical ranges of the outer scale (4-32 m), Fried parameter (10 cm) and noise in the variances (signal-to-noise ratio of 10 and above). It is found that, using the algorithm, both parameters are recovered with sub-per cent accuracy.

2019

Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation

Authors
Carvalho, MI; Facao, M;

Publication
PHYSICAL REVIEW E

Abstract
We found stable soliton solutions for two generalizations of the cubic complex Ginzburg-Landau equation, namely, one that includes the term that, in optics, represents a delayed response of the nonlinear gain and the other including the self-steepening term, also in the optical context. These solutions do not require the presence of the delayed response of the nonlinear refractive index, such that, they exist regardless of the term previously considered essential for stabilization. The existence of these solitons was predicted by a perturbation approach, and then confirmed by solving the ordinary differential equations, resulting from a similarity reduction, and also by applying a linear stability analysis. We found that these solitons exist for a large region of the parameter space and possess very asymmetric amplitude profiles as well as a complicated chirp characteristic.

2020

Modelling and simulation of electromagnetically induced transparency in hollow-core microstructured optical fibres

Authors
Rodrigues, SMG; Facao, M; Ines Carvalho, MI; Ferreira, MFS;

Publication
OPTICS COMMUNICATIONS

Abstract
We study the electromagnetically induced transparency (EIT) phenomenon in a hollow-core fibre filled with rubidium gas. We analyse the impact of the guiding effect and of the temperature on the properties of the EIT phenomenon. The refractive index felt by the probe laser is found to vary due to the radial dependence of the fibre mode field at the pump frequency. Several results are presented for the transmission, dispersion, and group velocity of the probe field, considering both the free propagation regime and the guided propagation along the hollow-core fibre. We note that the EIT occurring in a waveguide has a great potential for practical applications since it can be controlled by adjusting the gas and the fibre properties.

2022

Dissipative solitons stabilized by nonlinear gradient terms: Time-dependent behavior and generic properties

Authors
Descalzi, O; Carvalho, MI; Facao, M; Brand, HR;

Publication
CHAOS

Abstract
We study the time-dependent behavior of dissipative solitons (DSs) stabilized by nonlinear gradient terms. Two cases are investigated: first, the case of the presence of a Raman term, and second, the simultaneous presence of two nonlinear gradient terms, the Raman term and the dispersion of nonlinear gain. As possible types of time-dependence, we find a number of different possibilities including periodic behavior, quasi-periodic behavior, and also chaos. These different types of time-dependence are found to form quite frequently from a window structure of alternating behavior, for example, of periodic and quasi-periodic behaviors. To analyze the time dependence, we exploit extensively time series and Fourier transforms. We discuss in detail quantitatively the question whether all the DSs found for the cubic complex Ginzburg-Landau equation with nonlinear gradient terms are generic, meaning whether they are stable against structural perturbations, for example, to the additions of a small quintic perturbation as it arises naturally in an envelope equation framework. Finally, we examine to what extent it is possible to have different types of DSs for fixed parameter values in the equation by just varying the initial conditions, for example, by using narrow and high vs broad and low amplitudes. These results indicate an overlapping multi-basin structure in parameter space. Published under an exclusive license by AIP Publishing.

2001

Optical spatial shock waves in photorefractive media

Authors
Grandpierre, AG; Christodoulides, DN; Carvalho, MI; Segev, M;

Publication
Optics InfoBase Conference Papers

Abstract
We show that the evolution equations describing the two-wave mixing interaction between two co-directional optical beams in photorefractive media can allow spatial shock-wave solutions. The properties of this new family of kink-type wave fronts are described in detail. © 2001 OSA/NLGW 2001, © 2000 Optical Society of America.

2008

A numerical simulator for VITRUV

Authors
LeBouquin, JB; Herwats, E; Carvalho, MI; Garcia, P; Berger, JP; Absil, O;

Publication
POWER OF OPTICAL/IR INTERFEROMETRY: RECENT SCIENTIFIC RESULTS AND 2ND GENERATION INSTRUMENTATION

Abstract
VITRUVsim is a numerical tool with as much as possible physics included. Inputs are the source parameters (flux, morphology, position...) and outputs are sequences of observed fringes and/or reduced visibilities. VITRUVsim is written in a portable and free language Yorick(4).

  • 4
  • 10