Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Henrique Piqueiro

2025

Decision-Making Framework For AMR Fleet Size In Manufacturing Environments

Authors
Rema C.; Santos R.; Piqueiro H.; Matos D.M.; Oliveirat P.M.; Costa P.; Silva M.F.;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Industry 4.0 is transforming manufacturing environments, with robotics being a key technology that enhances various capabilities. The flexibility of Autonomous Mobile Robots has led to the rise of multi-robot systems in industrial settings. Considering the high cost of these robots, it is essential to determine the best fit of number and type before making any major investments. Simulation and modeling are valuable decision-support tools, allowing the simulation of different setups to address robot fleet sizing issues. This paper introduces a decision-support framework that combines a fleet manager software stack with the FlexSim simulator, helping decision-makers determine the most suitable mobile robots fleet size tailored to their needs. Unlike previous approaches, the developed solution integrates the same real robot coordination software in both simulation and actual deployment, ensuring that tested scenarios accurately reflect real-world conditions. A case study was conducted to evaluate the framework, involving multiple tasks of loading and unloading materials within a warehouse. Five different scenarios with varying fleet sizes were simulated, and their performances assessed. The analysis concluded that, for the case study under consideration, a fleet of three robots was the most suitable, considering relevant key performance indicators. The results confirmed that the developed solution is an effective alternative for addressing the problem and represents a novel technology with no prior state-of-the-art equivalents.

2024

Transitioning trends into action: A simulation-based Digital Twin architecture for enhanced strategic and operational decision-making

Authors
Santos, R; Piqueiro, H; Dias, R; Rocha, CD;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
In the dynamic realm of nowadays manufacturing, integrating digital technologies has become paramount for enhancing operational efficiency and decision-making processes. This article presents a novel system architecture that integrates a Simulation-based Digital Twin (DT) with emerging trends in manufacturing to enhance decision-making, accompanied by a detailed technical approach encompassing protocols and technologies for each component. The DT leverages advanced simulation techniques to model, monitor, and optimize production processes in real time, facilitating both strategic and operational decision-making. Complementing the DT, trending technologies such as artificial intelligence, additive manufacturing, collaborative robots, autonomous vehicles, and connectivity advancements are strategically integrated to enhance operational efficiency and facilitate the adoption of the Manufacturing as a Service (MaaS) paradigm. A case study within a MaaS supplier context, deployed in an industrial laboratory with advanced robotic systems, demonstrates the practical application of optimizing dynamic job-shop configurations using Simulation-based DT, showcasing strategies to improve operational efficiency and resource utilization. The results of the industrial experiment were highly encouraging, underscoring the potential for extension to more intricate industrial systems, with particular emphasis on incorporating sustainability and remanufacturing principles.

2022

Mitigating Biomass Supply Chain Uncertainty Through Discrete Event Simulation

Authors
Piqueiro, H; de Sousa, JP; Santos, R; Gomes, R;

Publication
Proceedings of the International Conference on Industrial Engineering and Operations Management

Abstract

2023

Managing Disruptions in a Biomass Supply Chain: A Decision Support System Based on Simulation/Optimisation

Authors
Piqueiro, H; Gomes, R; Santos, R; de Sousa, JP;

Publication
SUSTAINABILITY

Abstract
To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a more efficient operations management, and enhancing the design process. Uncertainty and variability in the biomass supply chain is a critical issue that needs to be considered in the production planning of bioenergy plants. A simulation/optimisation framework was developed to support decision-making, by combining plans generated by a resource allocation optimisation model with the simulation of disruptive wildfire scenarios in the forest biomass supply chain. Different scenarios have been generated to address uncertainty and variability in the quantity and quality of raw materials in the different supply nodes. Computational results show that this simulation/optimisation approach can have a significant impact in the operations efficiency, particularly when disruptions occur closer to the end of the planning horizon. The approach seems to be easily scalable and easy to extend to other sectors.

2026

Optimizing Warehouse Intralogistics with Simulation: Combining AMRs and Container Loading Strategies

Authors
Santos, R; Piqueiro, H; Soares, Â; Mendes, A; Ramos, G;

Publication
Lecture Notes in Mechanical Engineering

Abstract
The rapid advancement of warehouse automation has increased the need for intelligent intralogistics solutions that enhance material handling efficiency and optimize space utilization. This research presents a simulation-based methodology that integrates Autonomous Mobile Robots (AMRs) with container loading optimization in a unified decision-support framework that dynamically synchronizes AMR routing with optimized truckload configurations, a feature not commonly addressed jointly in existing literature to improve warehouse operations. By leveraging a hybrid approach combining discrete event and agent-based simulation in FlexSim, the study evaluates the impact of AMR fleet size, routing strategies, and truckload configurations on overall logistics performance. A proof-of-concept industrial case study illustrates how different scenarios influence key performance metrics, such as total operation time and resource utilization. The findings demonstrate that synchronized AMR deployment and optimized container loading strategies contribute to increased throughput, reduced handling time, and enhanced logistics unit utilization. This work provides a framework for dynamic logistics planning, offering valuable insights for companies seeking to enhance warehouse efficiency and sustainability through simulation-driven decision support. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

Simulation-Driven Approach for Dimensioning AMR Fleets in Distribution Centre Logistics

Authors
Piqueiro, H; Santos, R; Almeida, AH; Lopes, J;

Publication
Lecture Notes in Mechanical Engineering

Abstract
The adoption of Autonomous Mobile Robots (AMRs) has emerged as a promising solution to enhance efficiency and reduce operational costs for industrial companies. Given the significant cost of AMRs, it is crucial to determine the optimal number and characteristics before making significant investments. This study proposes a decision-support framework based on simulation to assess the impact of integrating AMR robots in a complex distribution center. Additionally, this framework aids decision-makers in determining the optimal fleet size of AMR robots and corresponding charging stations. A simulation model was developed using data from a leading retail company, focusing on pallet movement within the facility, comparing scenarios combining AMRs with other intralogistics implementations. This methodology incorporates uncertainty, variability (statistical distributions to create transportation orders, acceleration, demand and offer fluctuations) and implements fleet management, transportation capacity, demand matching, and resource utilization according to real case scenarios. The proposed model replicates accurate robot coordination and actual deployment environments, ensuring that the tested scenarios approximate the real-world conditions as much as possible. Preliminary findings show results supporting the decision-making for a fleet size to meet weekly production targets, optimize robot utilization, and coordinate charging instances to prevent production stops. Conclusions suggest that the proposed simulation approach is an effective tool for planning and implementing logistics solutions, enabling users to make informed decisions before investing. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.