Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Carlos Manuel Correia

2021

Closed loop predictive control of adaptive optics systems with convolutional neural networks

Authors
Swanson, R; Lamb, M; Correia, CM; Sivanandam, S; Kutulakos, K;

Publication
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Abstract
Predictive wavefront control is an important and rapidly developing field of adaptive optics (AO). Through the prediction of future wavefront effects, the inherent AO system servo-lag caused by the measurement, computation, and application of the wavefront correction can be significantly mitigated. This lag can impact the final delivered science image, including reduced strehl and contrast, and inhibits our ability to reliably use faint guide stars. We summarize here a novel method for training deep neural networks for predictive control based on an adversarial prior. Unlike previous methods in the literature, which have shown results based on previously generated data or for open-loop systems, we demonstrate our network's performance simulated in closed loop. Our models are able to both reduce effects induced by servo-lag and push the faint end of reliable control with natural guide stars, improving K-band Strehl performance compared to classical methods by over 55 per cent for 16th magnitude guide stars on an 8-m telescope. We further show that LSTM based approaches may be better suited in high-contrast scenarios where servo-lag error is most pronounced, while traditional feed forward models are better suited for high noise scenarios. Finally, we discuss future strategies for implementing our system in real-time and on astronomical telescope systems.

2021

First error budget of a deployable CubeSat telescope

Authors
Sauvage, JF; Schwartz, N; Vievard, S; Bonnefois, A; Velluet, MT; Correia, C; Cassaing, F; Fusco, T; Michau, V; Krapez, JC; Ferrari, M; Laginja, I;

Publication
SPACE TELESCOPES AND INSTRUMENTATION 2020: OPTICAL, INFRARED, AND MILLIMETER WAVE

Abstract
The volume available on-board small satellites limit the optical aperture to a few centimetres, which limits the Ground-Sampling Distance (GSD) in the visible to approximately 3 m at 500 km. We present a performance analysis of the concept of a deployable CubeSat telescope. This payload will allow a tripling of the ground resolution achievable from a CubeSat imager, hence allowing very high resolution imaging from Low Earth Orbit (LEO). The project combines precision opto-mechanical deployment and cophasing of the mirrors segments using active optics. The payload has the potential of becoming a new off-the-shelf standardised system to be proposed for all high angular resolution imaging missions using CubeSats or similar nanosats. Ultimately, this technology will develop new instrumentation and technology for small satellite platforms with a primary mirror size equal or larger than 30 cm. In this paper, we present the breakdown of the different error sources that may affect the final optical quality and propose cophasing strategies. We show that the piston, tip and tilt aberrations may need to be as small as 15 nm RMS to allow for diffraction-limited imaging. By taking a co-conception approach, i.e. by taking into account the post-processing capability such as deconvolution, we believe these constraints may be somewhat released. Finally, we show numerical simulation of different solutions allowing the aberrations of the primary mirror segments.

2022

Keck Adaptive Optics Facility: Real Time Controller Upgrade

Authors
Chin J.C.Y.; Cetre S.; Wizinowich P.; Ragland S.; Lilley S.; Wetherell E.; Surendran A.; Correia C.; Marin E.; Biasi R.; Patauner C.; Pescoller D.; Glazebrook K.; Jameson A.; Gauvin W.; Rigaut F.; Gratadour D.; Bernard J.;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
The W. M. Keck Observatory Adaptive Optics (AO) facilities have been operating with a Field Programmable Gate Array (FPGA) based real time controller (RTC) since 2007. The RTC inputs data from various AO wavefront and tip/tilt sensors; and corrects image blurring from atmospheric turbulence via deformable and tip/tilt mirrors. Since its commissioning, the Keck I and Keck II RTCs have been upgraded to support new hardware such as pyramid wavefront and infrared tip-tilt sensors. However, they are reaching the limits of their capabilities in terms of processing bandwidth and the ability to interface with new hardware. Together with the Keck All-sky Precision Adaptive optics (KAPA) project, a higher performance and a more reliable RTC is needed to support next generation capabilities such as laser tomography and sensor fusion. This paper provides an overview of the new RTC system, developed with our contractor/collaborators (Microgate, Swinburne University of Technology and Australian National University), and the initial on-sky performance. The upgrade includes an Interface Module to interface with the wavefront sensors and controlled hardware, and a Graphical Processing Unit (GPU) based computational engine to meet the system's control requirements and to provide a flexible software architecture to allow future algorithms development and capabilities. The system saw first light in 2021 and is being commissioned in 2022 to support single conjugate laser guide star (LGS) AO, along with a more sensitive EMCCD camera. Initial results are provided to demonstrate single NGS & LGS performance, system reliability, and the planned upgrade for four LGS to support laser tomography.

2022

The multi-object adaptive optics system for the Gemini Infra-Red Multi-Object Spectrograph

Authors
Chapman S.C.; Conod U.; Turri P.; Jackson K.; Lardiere O.; Sivanandam S.; Andersen D.; Correia C.; Lamb M.; Ross C.; Sivo G.; Veran J.P.;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
The Gemini Infra-Red Multi-Object Spectrograph (GIRMOS) is a four-arm, Multi-Object Adaptive Optics (MOAO) IFU spectrograph being built for Gemini (commissioning in 2024). GIRMOS is being planned to interface with the new Gemini-North Adaptive Optics (GNAO) system, and is base lined with a requirement of 50% EE within a 0.100 spaxel at H-band. We present a design and forecast the error budget and performance of GIRMOS-MOAO working behind GNAO. The MOAO system will patrol the 20 field of regard of GNAO, utilizing closed loop GLAO or MCAO for lower order correction. GIRMOS MOAA will perform tomographic reconstruction of the turbulence using the GNAO WFS, and utilize order 16x16 actuator DMs operating in open loop to perform an additional correction from the Pseudo Open Loop (POL) slopes, achieving close to diffraction limited performance from the combined GNAO+MOAO correction. This high performance AO spectrograph will have the broadest impact in the study of the formation and evolution of galaxies, but will also have broad reach in fields such as star and planet formation within our Milky Way and supermassive black holes in nearby galaxies.

2022

Keck All Sky Precision Adaptive Optics Program Overview

Authors
Wizinowich P.; Lu J.R.; Cetre S.; Chin J.; Correia C.; Delorme J.R.; Gers L.; Lilley S.; Lyke J.; Marin E.; Ragland S.; Richards P.; Surendran A.; Wetherell E.; Chen C.F.; Chu D.; Do T.; Fassnacht C.; Freeman M.; Gautam A.; Ghez A.; Hunter L.; Jones T.; Liu M.C.; Mawet D.; Max C.; Morris M.; Phillips M.; Ruffio J.B.; Rundquist N.E.; Sabhlok S.; Terry S.; Treu T.; Wright S.;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes (1) an upgrade to the Keck I laser guide star adaptive optics (AO) facility to improve image quality and sky coverage, (2) the inclusion of AO telemetry-based point spread function estimates with all science exposures, (3) four key science programs, and (4) an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For this conference we focus on the KAPA upgrades since the 2020 SPIE proceedings1 including implementation of a laser asterism generator, wavefront sensor, real-time controller, asterism and turbulence simulators, the laser tomography system itself along with new operations software and science tools, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star and focus measurements. We will also report on the results of daytime and on-sky calibrations and testing.

2022

Three-sided pyramid wavefront sensor, part II: preliminary demonstration on the new comprehensive adaptive optics and coronagraph test instrument testbed

Authors
Schatz L.; Codona J.; Long J.D.; Males J.R.; Pullen W.; Lumbres J.; Van Gorkom K.; Chambouleyron V.; Close L.M.; Correia C.; Fauvarque O.; Fusco T.; Guyon O.; Hart M.; Janin-Potiron P.; Johnson R.; Jovanovic N.; Mateen M.; Sauvage J.F.; Neichel B.;

Publication
Journal of Astronomical Telescopes, Instruments, and Systems

Abstract
The next generation of giant ground and space telescopes will have the light-collecting power to detect and characterize potentially habitable terrestrial exoplanets using high-contrast imaging for the first time. This will only be achievable if the performance of the Giant Segment Mirror Telescopes (GSMTs) extreme adaptive optics (ExAO) systems are optimized to their full potential. A key component of an ExAO system is the wavefront sensor (WFS), which measures aberrations from atmospheric turbulence. A common choice in current and next-generation instruments is the pyramid wavefront sensor (PWFS). ExAO systems require high spatial and temporal sampling of wavefronts to optimize performance and, as a result, require large detectors for the WFS. We present a closed-loop testbed demonstration of a three-sided pyramid wavefront sensor (3PWFS) as an alternative to the conventional four-sided pyramid wavefront (4PWFS) sensor for GSMT-ExAO applications on the innovative comprehensive adaptive optics and coronagraph test instrument (CACTI). The 3PWFS is less sensitive to read noise than the 4PWFS because it uses fewer detector pixels. The 3PWFS has further benefits: a high-quality three-sided pyramid optic is easier to manufacture than a four-sided pyramid. We describe the design of the two components of the CACTI system, the adaptive optics simulator and the PWFS testbed that includes both a 3PWFS and 4PWFS. We detail the error budget of the CACTI system, review its operation and calibration procedures, and discuss its current status. A preliminary experiment was performed on CACTI to study the performance of the 3PWFS to the 4PWFS in varying strengths of turbulence using both the raw intensity and slopes map signal processing methods. This experiment was repeated for a modulation radius of 1.6 and 3.25 ? / D. We found that the performance of the two wavefront sensors is comparable if modal loop gains are tuned.

  • 18
  • 23