2025
Authors
Cardoso, AF; Sousa, P; Oliveira, HP; Pereira, T;
Publication
2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Abstract
2026
Authors
Sousa, P; Campai, D; Andrade, J; Pereira, P; Goncalves, T; Teixeira, LF; Pereira, T; Oliveira, HP;
Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II
Abstract
Cancer is a leading cause of mortality worldwide, with breast and lung cancer being the most prevalent globally. Early and accurate diagnosis is crucial for successful treatment, and medical imaging techniques play a pivotal role in achieving this. This paper proposes a novel pipeline that leverages generative artificial intelligence to enhance medical images by combining synthetic image generation and super-resolution techniques. The framework is validated in two medical use cases (breast and lung cancers), demonstrating its potential to improve the quality and quantity of medical imaging data, ultimately contributing to more precise and effective cancer diagnosis and treatment. Overall, although some limitations do exist, this paper achieved satisfactory results for an image size which is conductive to specialist analysis, and further expands upon this field's capabilities.
2025
Authors
Sousa, P; Sousa, H; Pereira, T; Batista, E; Gouveia, P; Oliveira, HP;
Publication
2025 IEEE 38TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS
Abstract
Advancements in the care for patients with breast cancer have demanded the development of biomechanical breast models for the planning and risk mitigation of such invasive surgical procedures. However, these approaches require large amounts of high-quality magnetic resonance imaging (MRI) training data that is of difficult acquisition and availability. Although this can be solved using synthetic data, generating high resolution images comes at the price of very high computational constraints and tipically low performances. On the other hand, producing lower resolution samples yields better results and efficiency but falls short of meeting health professional standards. Therefore, this work aims to validate a joint approach between lower resolution generative models and the proposed super-resolution architecture, titled Shifted Window Image Restoration (SWinIR), which was used to achieve a 4x increase in image size of breast cancer patient MRI samples. Results prove to be promising and to further expand upon the super-resolution state-of-the-art, achieving good maximum peak signal-to-noise ratio of 41.36 and structural similarity index values of 0.962 and thus beating traditional methods and other machine learning architectures.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.