2021
Authors
Matos, D; Costa, P; Lima, J; Costa, P;
Publication
ROBOTICS
Abstract
Most path planning algorithms used presently in multi-robot systems are based on offline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real time, rather than planning in advance, by using a temporal estimation of the robot's positions at any given time. In this article, the implementation of a control system for multi-robot applications that operate in environments where communication faults can occur and where entire sections of the environment may not have any connection to the communication network will be presented. This system uses the TEA* to plan multiple robot paths and a supervision system to control communications. The supervision system supervises the communication with the robots and checks whether the robot's movements are synchronized. The implemented system allowed the creation and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA* algorithm. Using the Simtwo2020 simulation software, capable of simulating movement dynamics and the Lazarus development environment, it was possible to simulate the execution of several different missions by the implemented system and analyze their results.
2021
Authors
Matos, D; Costa, P; Lima, J; Valente, A;
Publication
Optimization, Learning Algorithms and Applications - First International Conference, OL2A 2021, Bragança, Portugal, July 19-21, 2021, Revised Selected Papers
Abstract
Task Scheduling assumes an integral topic in the efficiency of multiple mobile robots systems and is a key part in most modern manufacturing systems. Advances in the field of combinatorial optimisation have allowed the implementation of algorithms capable of solving the different variants of the vehicle routing problem in relation to different objectives. However few of this approaches are capable of taking into account the nuances associated with the coordinated path planning in multi-AGV systems. This paper presents a new study about the implementation of the Simulated Annealing algorithm to minimise the time and distance cost of executing a tasks set while taking into account possible pathing conflicts that may occur during the execution of the referred tasks. This implementation uses an estimation of the planned paths for the robots, provided by the Time Enhanced A* (TEA*) to determine where possible pathing conflicts occur and uses the Simulated Annealing algorithm to optimise the attribution of tasks to each robot, in order to minimise the pathing conflicts. Results are presented that validate the efficiency of this algorithm and compare it to an approach that does not take into account the estimation of the robots paths.
2021
Authors
Cruz A.; Matos D.; Lima J.; Costa P.; Costa P.;
Publication
Communications in Computer and Information Science
Abstract
Automated guided vehicles (AGV) represent a key element in industries’ intralogistics and the use of AGV fleets bring multiple advantages. Nevertheless, coordinating a fleet of AGV is already a complex task but when exposed to delays in the trajectory and communication faults it can represent a threat, compromising the safety, productivity and efficiency of these systems. Concerning this matter, trajectory planning algorithms allied with supervisory systems have been studied and developed. This article aims to, based on work developed previously, implement and test a Multi AGV Supervisory System on real robots and analyse how the system responds to the dynamic of a real environment, analysing its intervention, what influences it and how the execution time is affected.
2025
Authors
Rema C.; Santos R.; Piqueiro H.; Matos D.M.; Oliveirat P.M.; Costa P.; Silva M.F.;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Industry 4.0 is transforming manufacturing environments, with robotics being a key technology that enhances various capabilities. The flexibility of Autonomous Mobile Robots has led to the rise of multi-robot systems in industrial settings. Considering the high cost of these robots, it is essential to determine the best fit of number and type before making any major investments. Simulation and modeling are valuable decision-support tools, allowing the simulation of different setups to address robot fleet sizing issues. This paper introduces a decision-support framework that combines a fleet manager software stack with the FlexSim simulator, helping decision-makers determine the most suitable mobile robots fleet size tailored to their needs. Unlike previous approaches, the developed solution integrates the same real robot coordination software in both simulation and actual deployment, ensuring that tested scenarios accurately reflect real-world conditions. A case study was conducted to evaluate the framework, involving multiple tasks of loading and unloading materials within a warehouse. Five different scenarios with varying fleet sizes were simulated, and their performances assessed. The analysis concluded that, for the case study under consideration, a fleet of three robots was the most suitable, considering relevant key performance indicators. The results confirmed that the developed solution is an effective alternative for addressing the problem and represents a novel technology with no prior state-of-the-art equivalents.
2025
Authors
Ribeiro, J; Brilhante, M; Matos, DM; Silva, CA; Sobreira, H; Costa, P;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Multi-robot coordination aims to synchronize robots for optimized, collision-free paths in shared environments, addressing task allocation, collision avoidance, and path planning challenges. The Time Enhanced A* (TEA*) algorithm addresses multi-robot pathfinding offering a centralized and sequential approach. However, its sequential nature can lead to order-dependent variability in solutions. This study enhances TEA* through multi-threading, using thread pooling and parallelization techniques via OpenMP, and a sensitivity analysis enabling parallel exploration of robot-solving orders to improve robustness and the likelihood of finding efficient, feasible paths in complex environments. The results show that this approach improved coordination efficiency, reducing replanning needs and simulation time. Additionally, the sensitivity analysis assesses TEA*'s scalability across various graph sizes and number of robots, providing insights into how these factors influence the efficiency and performance of the algorithm.
2024
Authors
Silva, RT; Brilhante, M; Sobreira, H; Matos, D; Costa, P;
Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) have emerged as key innovations in the industry world, with AMRs offering flexibility a nd adaptability for dynamic environments, while AGVs provide high accuracy for repetitive tasks; thus, this research proposes a study of fleets of both AGVs and AMRs to enhance productivity and efficiency in industrial settings. Several tests were performed where the duration of a mission, the success and collision rate, and the average number of disputes per mission were analyzed in order to obtain results. In conclusion, while AGVs tend to be more reliable and consistent in task completion, AMRs offer greater flexibility a nd speed.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.