Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Renan Tosin

2024

Bi-directional hyperspectral reconstruction of cherry tomato: diagnosis of internal tissues maturation stage and composition

Authors
Tosin, R; Cunha, M; Monteiro Silva, F; Santos, F; Barroso, T; Martins, R;

Publication
FRONTIERS IN PLANT SCIENCE

Abstract
Introduction: Precision monitoring maturity in climacteric fruits like tomato is crucial for minimising losses within the food supply chain and enhancing pre- and post-harvest production and utilisation. Objectives: This paper introduces an approach to analyse the precision maturation of tomato using hyperspectral tomography-like. Methods: A novel bi-directional spectral reconstruction method is presented, leveraging visible to near-infrared (Vis-NIR) information gathered from tomato spectra and their internal tissues (skin, pulp, and seeds). The study, encompassing 118 tomatoes at various maturation stages, employs a multi-block hierarchical principal component analysis combined with partial least squares for bi-directional reconstruction. The approach involves predicting internal tissue spectra by decomposing the overall tomato spectral information, creating a superset with eight latent variables for each tissue. The reverse process also utilises eight latent variables for reconstructing skin, pulp, and seed spectral data. Results: The reconstruction of the tomato spectra presents a mean absolute percentage error of 30.44 % and 5.37 %, 5.25 % and 6.42 % and Pearson's correlation coefficient of 0.85, 0.98, 0.99 and 0.99 for the skin, pulp and seed, respectively. Quality parameters, including soluble solid content (%), chlorophyll (a.u.), lycopene (a.u.), and puncture force (N), were assessed and modelled with PLS with the original and reconstructed datasets, presenting a range of R2 higher than 0.84 in the reconstructed dataset. An empirical demonstration of the tomato maturation in the internal tissues revealed the dynamic of the chlorophyll and lycopene in the different tissues during the maturation process. Conclusion: The proposed approach for inner tomato tissue spectral inference is highly reliable, provides early indications and is easy to operate. This study highlights the potential of Vis-NIR devices in precision fruit maturation assessment, surpassing conventional labour-intensive techniques in cost-effectiveness and efficiency. The implications of this advancement extend to various agronomic and food chain applications, promising substantial improvements in monitoring and enhancing fruit quality. [GRAPHICS] .

2023

In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture

Authors
Erica David; Renan Tosin; Igor Gonçalves; Leandro Rodrigues; Catarina Barbosa; Filipe Santos; Hugo Pinheiro; Rui Martins; Mario Cunha;

Publication
The 3rd International Electronic Conference on Agronomy

Abstract

2023

Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models using Hyperspectral Proximal Sensors

Authors
Santos-Campos, M; Tosin, R; Rodrigues, L; Gonçalves, I; Barbosa, C; Martins, R; Santos, F; Cunha, M;

Publication
The 3rd International Electronic Conference on Agronomy

Abstract

2024

A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy

Authors
Tosin, R; Monteiro Silva, F; Martins, R; Cunha, M;

Publication
HORTICULTURAE

Abstract
The determination of grape quality parameters is intricately linked to the mineral composition of the fruit; this relationship is increasingly affected by the impacts of climate change. The conventional chemical methodologies employed for the mineral quantification of grape tissues are expensive and impracticable for widespread commercial applications. This paper utilized Laser-Induced Breakdown Spectroscopy (LIBS) to analyze the mineral constituents within the skin, pulp, and seeds of two distinct Vitis vinifera cultivars: a white cultivar (Loureiro) and a red cultivar (Vinh & atilde;o). The primary objective was to discriminate the potential variations in the calcium (Ca), magnesium (Mg), and nitrogen (N) concentrations and water content among different grape tissues, explaining their consequential impact on the metabolic constitution of the grapes and, by extension, their influence on various quality parameters. Additionally, the study compared the mineral contents of the white and red grape cultivars across three distinct time points post veraison. Significant differences (p < 0.05) were observed between the Loureiro and Vinh & atilde;o cultivars in Ca concentrations across all the dates and tissues and for Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin and pulp. In the Vinh & atilde;o cultivar, Ca differences were found in the pulp across the dates, N in the seeds, and water content in the skin, pulp, and seeds. Comparing the cultivars within tissues, Ca exhibited differences in the pulp, Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin, pulp, and seeds. These findings provide insights into the relationship between the grape mineral and water content, climatic factors, and viticulture practices within a changing climate.

2023

Tomography-like for hyperspectral bi-directional grape tissue reconstruction based on machine learning: Implications for diagnosis composition and precision maturation monitoring

Authors
Tosin, R; Martins, R; Cunha, M;

Publication
BIO Web of Conferences

Abstract
This study used a tomography-like analysis to reconstruct the hyperspectral data from different tissues of the grapes: skin, pulp, and seeds. The dataset included 216 grapes of Loureiro (VIVC 25085) and 205 Vinhão (VIVC 13100) at various dates from the veraison until the harvest. A more comprehensive spectral data analysis identified how the internal tissues are related to the total grape spectra. Each tissue was reconstructed separately by decomposing the whole grapevine hyperspectral information. The results showed that the spectral reconstruction was more successful for Loureiro than Vinhão, with a mean absolute error of 6.08% and 33.32%, respectively. Partial least squares (PLS) regression models were developed for both cultivars using the reconstructed spectral data, enabling the modelling of ºBrix, puncture force (N), chlorophyll (a.u.), and anthocyanin content (a.u.). These models exhibited strong performance, with R2 > 0.8 and mean absolute percentage errors (MAPE) below 37%. This study emphasises the critical role of considering the grape's internal tissue in assessing its maturation process. The findings introduce an innovative methodology for efficiently evaluating grape maturation dynamics and inner tissue characteristics. By highlighting the importance of internal tissue analysis, this research paves the way for expedited and accurate monitoring of grape maturation, offering valuable insights into physiological-based viticultural practices and grape quality assessment. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

2023

Precision maturation assessment of grape tissues: Hyperspectral bi-directional reconstruction using tomography-like based on multi-block hierarchical principal component analysis

Authors
Tosin, R; Monteiro-Silva, F; Martins, R; Cunha, M;

Publication
BIOSYSTEMS ENGINEERING

Abstract
This paper introduces a tomography-like method for assessing grape maturation. It analyses inner tissue spectra through point-of-measurement (POM) sensing. A multi-block hierarchical principal component analysis (MHPCA) algorithm was used for the spectral reconstruction of total grapes (skin, pulp, and seed). Two grape cultivars, Loureiro (white; n = 216) and Vinhao (red; n = 205) were measured at 12 dates after veraison (DAV). The reconstructed spectra showed no significant differences (p < 0.001) from the originals for both grapes. Loureiro had better statistical metrics (Person's correlation coefficient (r) values for: total grape: 0.99, skin: 1; pulp: 1, seed: 0.94) than Vinhao (r values for: total grape: 0.92, skin: 0.92; pulp: 0.95, seed: 0.95). Using self learning artificial intelligence (SL-AI), the following parameters were predicted for both grapes: soluble solids content (%; MAPE <13%), puncture force (N; MAPE <29%), chlorophyll content (a.u.; MAPE <29%), and anthocyanin content (a.u.; MAPE <17%, Vinhao only). When comparing observed values with predicted skin, pulp, and seed spectra, Vinhao showed no statistical differences for most parameters, except pulp chlorophyll on one DAV in the final maturation stage. The same was done with the Loureiro cultivar. Although Loureiro mostly showed no statistical differences in assessed parameters across tissues and dates, variations were found in pulp and skin chlorophyll content and puncture force. This tomography-like approach based on tissue maturation can help viticulturists to access instant data on grape maturation, supporting informed decision-making and promoting more sustainable agricultural practices.

  • 3
  • 4