Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Renan Tosin

2025

Digital assessment of plant diseases: A critical review and analysis of optical sensing technologies for early plant disease diagnosis

Authors
Pereira, MR; Tosin, R; dos Santos, FN; Tavares, F; Cunha, M;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
The present critical literature review describes the state-of-the-art innovative proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting more precise and efficient phytosanitary measures. Research and development of new sensors for this purpose are currently a challenge. Present procedures and diagnosis techniques depend on visual characteristics and symptoms to be initiated and applied, compromising an early intervention. Also, these methods were designed to confirm the presence of pathogens, which did not have the required high throughput and speed to support real-time agronomic decisions in field extensions. Proximal sensor-based systems are a reasonable tool for an efficient and economic disease assessment. This work focused on identifying the application of optical and spectroscopic sensors as a tool for disease diagnosis. Biophoton emission, fluorescence spectroscopy, laser-induced breakdown spectroscopy, multi- and hyperspectral spectroscopy (HS), nuclear magnetic resonance spectroscopy, Raman spectroscopy, RGB imaging, thermography, volatile organic compounds assessment, and X-ray fluorescence were described due to their relevant potential. Nevertheless, some techniques revealed a low technology readiness level (TRL). The main conclusions identify HS, single and multi-spatial point observation, as the most applied methods for early plant disease diagnosis studies (88%), combined with distinct feature selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation indices (28%) and principal component analysis (19%) were the most popular FeS and DR approaches, highlighting the most relevant wavelengths contributing to disease diagnosis. In modeling, classification was the most applied technique (80%), used mainly for binary and multi-class health status identification. Regression was used in the remaining (21%) scientific works screened. The data was collected primarily in laboratory conditions (62%), and a few works were performed in field conditions (21%). Regarding the study's etiological agent responsible for causing the disease, fungi (53%) and viruses (23%) were the most analyzed group of pathogens found in the literature. Overall, proximal sensors are suitable for early plant disease diagnosis before and after symptom appearance, presenting classification accuracies mostly superior to 71% and regression coefficients superior to 61%. Nevertheless, additional research regarding the study of specific host-pathogen interactions is necessary.

2024

Advanced methodologies for the diagnosis of agronomic processes based on systems biology for precision agriculture

Authors
Renan Tosin;

Publication

Abstract

2025

Metabolic mapping for precision grape maturation: Application of a tomography-like method for site-specific management

Authors
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;

Publication
SMART AGRICULTURAL TECHNOLOGY

Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.

2024

Integrating Spectral Sensing and Systems Biology for Precision Viticulture: Effects of Shade Nets on Grapevine Leaves

Authors
Tosin, R; Portis, I; Rodrigues, L; Gonçalves, I; Barbosa, C; Teixeira, J; Mendes, RJ; Santos, F; Santos, C; Martins, R; Cunha, M;

Publication
HORTICULTURAE

Abstract
This study investigates how grapevines (Vitis vinifera L.) respond to shading induced by artificial nets, focusing on physiological and metabolic changes. Through a multidisciplinary approach, grapevines' adaptations to shading are presented via biochemical analyses and hyperspectral data that are then combined with systems biology techniques. In the study, conducted in a 'Moscatel Galego Branco' vineyard in Portugal's Douro Wine Region during post-veraison, shading was applied and predawn leaf water potential (Psi pd) was then measured to assess water stress. Biochemical analyses and hyperspectral data were integrated to explore adaptations to shading, revealing higher chlorophyll levels (chlorophyll a-b 117.39% higher) and increased Reactive Oxygen Species (ROS) levels in unshaded vines (52.10% higher). Using a self-learning artificial intelligence algorithm (SL-AI), simulations highlighted ROS's role in stress response and accurately predicted chlorophyll a (R2: 0.92, MAPE: 24.39%), chlorophyll b (R2: 0.96, MAPE: 17.61%), and ROS levels (R2: 0.76, MAPE: 52.17%). In silico simulations employing flux balance analysis (FBA) elucidated distinct metabolic phenotypes between shaded and unshaded vines across cellular compartments. Integrating these findings provides a systems biology approach for understanding grapevine responses to environmental stressors. The leveraging of advanced omics technologies and precise metabolic models holds immense potential for untangling grapevine metabolism and optimizing viticultural practices for enhanced productivity and quality.

2024

Spectral data augmentation for leaf nutrient uptake quantification

Authors
Martins, RC; Queirós, C; Silva, FM; Santos, F; Barroso, TG; Tosin, R; Cunha, M; Leao, M; Damásio, M; Martins, P; Silvestre, J;

Publication
BIOSYSTEMS ENGINEERING

Abstract
Data scarcity is a hurdle for physiology-based precision agriculture. Measuring nutrient uptake by visible-near infrared spectroscopy implies collecting spectral and compositional data from low-throughput, such as inductively coupled plasma optical emission spectroscopy. This paper introduces data augmentation in spectroscopy by hybridisation for expanding real-world data into synthetic datasets statistically representative of the real data, allowing the quantification of macronutrients (N, P, K, Ca, Mg, and S) and micronutrients (Fe, Mn, Zn, Cu, and B). Partial least squares (PLS), local partial least squares (LocPLS), and self-learning artificial intelligence (SLAI) were used to determine the capacity to expand the knowledge base. PLS using only real-world data (RWD) cannot quantify some nutrients (N and Cu in grapevine leaves and K, Ca, Mg, S, and Cu in apple tree leaves). The synthetic dataset of the study allowed predicting real-world leaf composition of macronutrients (N, P, K, Ca, Mg and S) (Pearson coefficient correlation (R) 0.61-0.94 and standard error (SE) 0.04-0.05%) and micronutrients (Fe, Mn, Zn, Cu and B) (R 0.66-0.91 and SE 0.88-3.98 ppm) in grapevine leaves using LocPLS and SLAI. The synthetic dataset loses significance if the real-world counterpart has low representativity, resulting in poor quantifications of macronutrients (R 0.51-0.72 and SE 0.02-0.13%) and micronutrients (R 0.53-0.76 and SE 8.89-37.89 ppm), and not allowing S quantification (R = 0.37, SE = 0.01) in apple tree leaves. Representative real-world sampling makes data augmentation in spectroscopy very efficient in expanding the knowledge base and nutrient quantifications.

2024

Plant Disease Diagnosis Based on Hyperspectral Sensing: Comparative Analysis of Parametric Spectral Vegetation Indices and Nonparametric Gaussian Process Classification Approaches

Authors
Pereira, MR; Verrelst, J; Tosin, R; Caicedo, JPR; Tavares, F; dos Santos, FN; Cunha, M;

Publication
AGRONOMY-BASEL

Abstract
Early and accurate disease diagnosis is pivotal for effective phytosanitary management strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease detection, yet challenges remain in effectively harnessing its potential. This study compares parametric spectral Vegetation Indices (VIs) and a nonparametric Gaussian Process Classification based on an Automated Spectral Band Analysis Tool (GPC-BAT) for diagnosing plant bacterial diseases using hyperspectral data. The study conducted experiments on tomato plants in controlled conditions and kiwi plants in field settings to assess the performance of VIs and GPC-BAT. In the tomato experiment, the modeling processes were applied to classify the spectral data measured on the healthy class of plants (sprayed with water only) and discriminate them from the data captured on plants inoculated with the two bacterial suspensions (108 CFU mL-1). In the kiwi experiment, the standard modeling results of the spectral data collected on nonsymptomatic plants were compared to the ones obtained using symptomatic plants' spectral data. VIs, known for their simplicity in extracting biophysical information, successfully distinguished healthy and diseased tissues in both plant species. The overall accuracy achieved was 63% and 71% for tomato and kiwi, respectively. Limitations were observed, particularly in differentiating specific disease infections accurately. On the other hand, GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying healthy and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and kiwi case studies. Despite its effectiveness, the model faced challenges in accurately predicting certain disease infections, especially in the early stages. Comparative analysis revealed commonalities and differences in the spectral bands identified by both approaches, with overlaps in critical regions across plant species. Notably, these spectral regions corresponded to the absorption regions of various photosynthetic pigments and structural components affected by bacterial infections in plant leaves. The study underscores the potential of hyperspectral sensing in disease diagnosis and highlights the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold biological significance, suggesting correlations between bacterial infections and alterations in plant pigments and structural components. Future research avenues could focus on refining these approaches for improved accuracy in diagnosing diverse plant-pathogen interactions, thereby aiding disease diagnosis. Specifically, efforts could be directed towards adapting these methodologies for early detection, even before symptom manifestation, to better manage agricultural diseases.

  • 2
  • 4