2023
Authors
Mello, J; Retorta, F; Silva, R; Villar, J; Saraiva, JT;
Publication
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
In Walrasian markets, an auctioneer proposes a price to the market participants, who react by revealing the quantities they are willing to buy or sell at this price. The auctioneer then proposes new prices to improve the demand and supply match until the equilibrium is reached. This market, common for stock exchanges, has also been proposed for electricity markets like power electricity exchanges, where iterations among auctioneer and market participants take place before the interval settlement period (ISP) until supply and demand match and a stable price is reached. We propose a Walrasian design for local electricity markets where the iterations between auctioneer and market participants happen in real time, so previous imbalances are used to correct the proposed price for the next ISP. The designs are simulated to test convergence and their capability of achieving efficient dynamic prices.
2023
Authors
Silva, R; Faria, S; Moreno, A; Retorta, F; Mello, J; Villar, J;
Publication
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
When the price of the energy shared within an energy community is based on a local energy market, it is the responsibility of each participant to bid adequately so that participating provides a larger benefit than not participating. Alternatively, centralized energy community bill minimization may be an option, but a mechanism to share the collective benefits among the members is needed. This mechanism should be fair and easy to explain, no members should be harmed with respect to their individual optimal behavior and should provide the right economic signal. This paper analyses and compares some common pricing mechanisms for the internal compensation for the energy shared among the members of an energy community centrally managed. Simple case examples are used to identify those pricing mechanisms that are fairer and provide the righter economic signals to the participants.
2023
Authors
Mello, J; de Lorenzo, C; Campos, FA; Villar, J;
Publication
ENERGIES
Abstract
Extensive literature is available for modeling and simulating local electricity markets, often called P2P electricity markets, and for pricing local energy transactions in energy communities. Market models and pricing mechanisms provide simulation tools to better understand how these new markets behave, helping to design their main rules for real applications, and assessing the financial compensations of the internal energy transactions. As such, pricing mechanisms are often needed in energy management systems when centralized management approaches are preferred to market-based ones. First, this paper highlights the links between local electricity markets, pricing mechanisms for local electricity transactions, and other approaches to sharing the collective benefits of participating in transactive energy communities. Then, a standard nomenclature is defined to review some of the main pricing mechanisms for local energy transactions, an innovative pricing mechanism based on the economic principles of a post-delivery pool market is proposed, and other relevant approaches for local electricity market simulation such as Nash equilibrium or agent-based simulation are also revisited. The revision was based on systematic searches in common research databases and on the authors' experience in European and national projects, including local industrial applications for the past five years. A qualitative assessment of the reviewed methods is also provided, and the research challenges are highlighted. This review is intended to serve as a practical guide to pricing mechanisms and market simulation procedures for practical designs of internal financial compensation to share the collective benefits of energy communities.
2023
Authors
José Villar; João Mello; João Peças Lopes;
Publication
Comunidades de Energia Renovável
Abstract
2023
Authors
Rocha, R; Silva, R; Mello, J; Faria, S; Retorta, F; Gouveia, C; Villar, J;
Publication
ENERGIES
Abstract
This paper proposes a three-stage model for managing energy communities for local energy sharing and providing grid flexibility services to tackle local distribution grid constraints. The first stage addresses the minimization of each prosumer's individual energy bill by optimizing the schedules of their flexible resources. The second stage optimizes the energy bill of the whole energy community by sharing the prosumers' energy surplus internally and re-dispatching their batteries, while guaranteeing that each prosumer's new energy bill is always be equal to or less than the bill that results for this prosumer from stage one. This collective optimization is designed to ensure an additional collective benefit, without loss for any community member. The third stage, which can be performed by the distribution system operator (DSO), aims to solve the local grid constraints by re-dispatching the flexible resources and, if still necessary, by curtailing local generation or consumption. Stage three minimizes the impact on the schedule obtained at previous stages by minimizing the loss of profit or utility for all prosumers, which are furthermore financially compensated accordingly. This paper describes how the settlement should be performed, including the allocation coefficients to be sent to the DSO to determine the self-consumed and supplied energies of each peer. Finally, some case studies allow an assessment of the performance of the proposed methodology. Results show, among other things, the potential benefits of allowing the allocation coefficients to take negative values to increase the retail market competition; the importance of stage one or, alternatively, the need for a fair internal price to avoid unfair collective benefit sharing among the community members; or how stage three can effectively contribute to grid constraint solving, profiting first from the existing flexible resources.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.