Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Susana Novais

2017

Lateral Load Sensing With an Optical Fiber Inline Microcavity

Authors
Novais, S; Ferreira, MS; Pinto, JL;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
A Fabry-Perot air bubble microcavity fabricated between a section of single mode fiber and a multimode fiber that requires only the use of a commercial fusion splicer is proposed. The study of the microcavities growth with the number of applied arcs is performed and several sensors are tested. The sensors are tested for lateral load measurements, and it is observed that there is dependence between the sensor dimensions and its sensitivity. The maximum sensitivity of 2.11 nm/N was obtained for the 161-mu m-long cavity. Moreover, given the low temperature sensitivity (<1 pm/degrees C), the proposed cavity should be adequate to perform temperature-independent measurements. The accurate technique control leads to the fabrication of reproducible cavities with the sensitivity required for the application. The way of manufacturing using a standard fusion splicer, given that no oils or etching solutions are involved, emerges as an alternative to the previously developed air bubble-based sensors.

2023

Erbium-doped fiber ring cavity for the measurement of refractive index variations

Authors
Perez Herrera, RA; Soares, L; Novais, S; Frazão, O; Silva, S;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract

2023

Measurement of Paracetamol Concentration Using an Erbium-Doped Fiber Ring Cavity

Authors
Soares, L; Perez Herrera, RA; Novais, S; Ferreira, A; Silva, S; Frazao, O;

Publication
PHOTONICS

Abstract
Process Analytical Technology (PAT) has been increasingly used in the pharmaceutical industry to monitor essential parameters in real-time during pharmaceutical processes. The concentration of Active Pharmaceutical Ingredients (APIs), such as paracetamol, is one of these parameters, and controlling its variations allows for optimization of the production process. In this study, a refractometric sensor, implemented by an interrogation system based on an Erbium-Doped Fiber Ring Cavity (EDFRC), was presented and experimentally demonstrated. The Cavity Ring proposed included a 1 x 3 coupler. One port of the coupler was used to increase the optical power of the system through a Fiber Bragg Grating (FBG), and the other two ports were used as sensing head and reference. The sensor detected variations of paracetamol concentration with a sensitivity of [(-1.00 +/- 0.05) x 10(-3)] nW/(g/kg) and a resolution of 5.53 g/kg. The results demonstrate the potential of this technology as a possible non-invasive PAT tool.

  • 9
  • 9