Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Gabriel Ferreira

2005

A Hybrid Method for Discovering Distance-Enhanced Inter-Transactional Rules

Authors
Ferreira, PG; Alves, R; Azevedo, PJ; Belo, O;

Publication
Actas de las X Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2005), September 14-16, 2005, Granada, Spain

Abstract

2010

Evolutionary patterns at the RNase based gametophytic self-incompatibility system in two divergent Rosaceae groups (Maloideae and Prunus)

Authors
Vieira, J; Ferreira, PG; Aguiar, B; Fonseca, NA; Vieira, CP;

Publication
BMC EVOLUTIONARY BIOLOGY

Abstract
Background: Within Rosaceae, the RNase based gametophytic self-incompatibility (GSI) system has been studied at the molecular level in Maloideae and Prunus species that have been diverging for, at least, 32 million years. In order to understand RNase based GSI evolution within this family, comparative studies must be performed, using similar methodologies. Result: It is here shown that many features are shared between the two species groups such as levels of recombination at the S-RNase ( the S-pistil component) gene, and the rate at which new specificities arise. Nevertheless, important differences are found regarding the number of ancestral lineages and the degree of specificity sharing between closely related species. In Maloideae, about 17% of the amino acid positions at the S-RNase protein are found to be positively selected, and they occupy about 30% of the exposed protein surface. Positively selected amino acid sites are shown to be located on either side of the active site cleft, an observation that is compatible with current models of specificity determination. At positively selected amino acid sites, non-conservative changes are almost as frequent as conservative changes. There is no evidence that at these sites the most drastic amino acid changes may be more strongly selected. Conclusions: Many similarities are found between the GSI system of Prunus and Maloideae that are compatible with the single origin hypothesis for RNase based GSI. The presence of common features such as the location of positively selected amino acid sites and lysine residues that may be important for ubiquitylation, raise a number of issues that, in principle, can be experimentally addressed in Maloideae. Nevertheless, there are also many important differences between the two Rosaceae GSI systems. How such features changed during evolution remains a puzzling issue.

2023

Soteria: Preserving Privacy in Distributed Machine Learning

Authors
Brito, C; Ferreira, P; Portela, B; Oliveira, R; Paulo, J;

Publication
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023

Abstract
We propose Soteria, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide spectrum of ML attacks.

2023

A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer

Authors
Baptista, D; Ferreira, PG; Rocha, M;

Publication
PLOS COMPUTATIONAL BIOLOGY

Abstract
Author summaryCancer therapies often fail because tumor cells become resistant to treatment. One way to overcome resistance is by treating patients with a combination of two or more drugs. Some combinations may be more effective than when considering individual drug effects, a phenomenon called drug synergy. Computational drug synergy prediction methods can help to identify new, clinically relevant drug combinations. In this study, we developed several deep learning models for drug synergy prediction. We examined the effect of using different types of deep learning architectures, and different ways of representing drugs and cancer cell lines. We explored the use of biological prior knowledge to select relevant cell line features, and also tested data-driven feature reduction methods. We tested both precomputed drug features and deep learning methods that can directly learn features from raw representations of molecules. We also evaluated whether including genomic features, in addition to gene expression data, improves the predictive performance of the models. Through these experiments, we were able to identify strategies that will help guide the development of new deep learning models for drug synergy prediction in the future. One of the main obstacles to the successful treatment of cancer is the phenomenon of drug resistance. A common strategy to overcome resistance is the use of combination therapies. However, the space of possibilities is huge and efficient search strategies are required. Machine Learning (ML) can be a useful tool for the discovery of novel, clinically relevant anti-cancer drug combinations. In particular, deep learning (DL) has become a popular choice for modeling drug combination effects. Here, we set out to examine the impact of different methodological choices on the performance of multimodal DL-based drug synergy prediction methods, including the use of different input data types, preprocessing steps and model architectures. Focusing on the NCI ALMANAC dataset, we found that feature selection based on prior biological knowledge has a positive impact-limiting gene expression data to cancer or drug response-specific genes improved performance. Drug features appeared to be more predictive of drug response, with a 41% increase in coefficient of determination (R-2) and 26% increase in Spearman correlation relative to a baseline model that used only cell line and drug identifiers. Molecular fingerprint-based drug representations performed slightly better than learned representations-ECFP4 fingerprints increased R-2 by 5.3% and Spearman correlation by 2.8% w.r.t the best learned representations. In general, fully connected feature-encoding subnetworks outperformed other architectures. DL outperformed other ML methods by more than 35% (R-2) and 14% (Spearman). Additionally, an ensemble combining the top DL and ML models improved performance by about 6.5% (R-2) and 4% (Spearman). Using a state-of-the-art interpretability method, we showed that DL models can learn to associate drug and cell line features with drug response in a biologically meaningful way. The strategies explored in this study will help to improve the development of computational methods for the rational design of effective drug combinations for cancer therapy.

2015

Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases

Authors
Yang J.; Huang T.; Petralia F.; Long Q.; Zhang B.; Argmann C.; Zhao Y.; Mobbs C.V.; Schadt E.E.; Zhu J.; Tu Z.; Ardlie K.G.; Deluca D.S.; Segrè A.V.; Sullivan T.J.; Young T.R.; Gelfand E.T.; Trowbridge C.A.; Maller J.B.; Tukiainen T.; Lek M.; Ward L.D.; Kheradpour P.; Iriarte B.; Meng Y.; Palmer C.D.; Winckler W.; Hirschhorn J.; Kellis M.; MacArthur D.G.; Getz G.; Shablin A.A.; Li G.; Zhou Y.H.; Nobel A.B.; Rusyn I.; Wright F.A.; Lappalainen T.; Ferreira P.G.; Ongen H.; Rivas M.A.; Battle A.; Mostafavi S.; Monlong J.; Sammeth M.; Mele M.; Reverter F.; Goldman J.; Koller D.; Guigo R.; McCarthy M.I.; Dermitzakis E.T.; Gamazon E.R.; Konkashbaev A.; Nicolae D.L.; Cox N.J.; Flutre T.; Wen X.; Stephens M.; Pritchard J.K.; Lin L.; Liu J.; Brown A.; Mestichelli B.; Tidwell D.; Lo E.; Salvatore M.; Shad S.; Thomas J.A.; Lonsdale J.T.; Choi C.; Karasik E.; Ramsey K.; Moser M.T.; Foster B.A.; Gillard B.M.; Syron J.; Fleming J.; Magazine H.; Hasz R.; Walters G.D.; Bridge J.P.; Miklos M.; Sullivan S.; Barker L.K.; Traino H.; Mosavel M.; Siminoff L.A.; Valley D.R.; Rohrer D.C.; Jewel S.; Branton P.; Sobin L.H.; Qi L.; Hariharan P.; Wu S.; Tabor D.; Shive C.; Smith A.M.; Buia S.A.;

Publication
Scientific Reports

Abstract
Aging is one of the most important biological processes and is a known risk factor for many age-related diseases in human. Studying age-related transcriptomic changes in tissues across the whole body can provide valuable information for a holistic understanding of this fundamental process. In this work, we catalogue age-related gene expression changes in nine tissues from nearly two hundred individuals collected by the Genotype-Tissue Expression (GTEx) project. In general, we find the aging gene expression signatures are very tissue specific. However, enrichment for some well-known aging components such as mitochondria biology is observed in many tissues. Different levels of cross-tissue synchronization of age-related gene expression changes are observed, and some essential tissues (e.g., heart and lung) show much stronger "co-aging" than other tissues based on a principal component analysis. The aging gene signatures and complex disease genes show a complex overlapping pattern and only in some cases, we see that they are significantly overlapped in the tissues affected by the corresponding diseases. In summary, our analyses provide novel insights to the co-regulation of age-related gene expression in multiple tissues; it also presents a tissue-specific view of the link between aging and age-related diseases.

2017

Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis

Authors
Yang F.; Wang J.; Pierce B.L.; Chen L.S.; Aguet F.; Ardlie K.G.; Cummings B.B.; Gelfand E.T.; Getz G.; Hadley K.; Handsaker R.E.; Huang K.H.; Kashin S.; Karczewski K.J.; Lek M.; Li X.; MacArthur D.G.; Nedzel J.L.; Nguyen D.T.; Noble M.S.; Segrè A.V.; Trowbridge C.A.; Tukiainen T.; Abell N.S.; Balliu B.; Barshir R.; Basha O.; Battle A.; Bogu G.K.; Brown A.; Brown C.D.; Castel S.E.; Chiang C.; Conrad D.F.; Cox N.J.; Damani F.N.; Davis J.R.; Delaneau O.; Dermitzakis E.T.; Engelhardt B.E.; Eskin E.; Ferreira P.G.; Frésard L.; Gamazon E.R.; Garrido-Martín D.; Gewirtz A.D.H.; Gliner G.; Gloudemans M.J.; Guigo R.; Hall I.M.; Han B.; He Y.; Hormozdiari F.; Howald C.; Im H.K.; Jo B.; Kang E.Y.; Kim Y.; Kim-Hellmuth S.; Lappalainen T.; Li G.; Li X.; Liu B.; Mangul S.; McCarthy M.I.; McDowell I.C.; Mohammadi P.; Monlong J.; Montgomery S.B.; Muñoz-Aguirre M.; Ndungu A.W.; Nicolae D.L.; Nobel A.B.; Oliva M.; Ongen H.; Palowitch J.J.; Panousis N.; Papasaikas P.; Park Y.S.; Parsana P.; Payne A.J.; Peterson C.B.; Quan J.; Reverter F.; Sabatti C.; Saha A.; Sammeth M.; Scott A.J.; Shabalin A.A.; Sodaei R.; Stephens M.; Stranger B.E.; Strober B.J.; Sul J.H.; Tsang E.K.; Urbut S.; van de Bunt M.; Wang G.; Wen X.; Wright F.A.;

Publication
Genome Research

Abstract
The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes (cis-eQTLs). More research is needed to identify effects of genetic variation on distant genes (trans-eQTLs) and understand their biological mechanisms. One common trans-eQTLs mechanism is “mediation” by a local (cis) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are “cis-mediators” of trans-eQTLs, including those “cis-hubs” involved in regulation of many trans-genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans-eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis-mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis-hubs and trans-eQTL regulation across tissue types.

  • 9
  • 14