Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by António Sá Pinto

2019

Tapping Along to the Difficult Ones: Leveraging User-Input for Beat Tracking in Highly Expressive Musical Content

Authors
Pinto, AS; Davies, MEP;

Publication
Perception, Representations, Image, Sound, Music - 14th International Symposium, CMMR 2019, Marseille, France, October 14-18, 2019, Revised Selected Papers

Abstract
We explore the task of computational beat tracking for musical audio signals from the perspective of putting an end-user directly in the processing loop. Unlike existing “semi-automatic” approaches for beat tracking, where users may select from among several possible outputs to determine the one that best suits their aims, in our approach we examine how high-level user input could guide the manner in which the analysis is performed. More specifically, we focus on the perceptual difficulty of tapping the beat, which has previously been associated with the musical properties of expressive timing and slow tempo. Since musical examples with these properties have been shown to be poorly addressed even by state of the art approaches to beat tracking, we re-parameterise an existing deep learning based approach to enable it to more reliably track highly expressive music. In a small-scale listening experiment we highlight two principal trends: i) that users are able to consistently disambiguate musical examples which are easy to tap to and those which are not; and in turn ii) that users preferred the beat tracking output of an expressive-parameterised system to the default parameterisation for highly expressive musical excerpts. © 2021, Springer Nature Switzerland AG.

2021

User-Driven Fine-Tuning for Beat Tracking

Authors
Pinto, AS; Bock, S; Cardoso, JS; Davies, MEP;

Publication
ELECTRONICS

Abstract
The extraction of the beat from musical audio signals represents a foundational task in the field of music information retrieval. While great advances in performance have been achieved due the use of deep neural networks, significant shortcomings still remain. In particular, performance is generally much lower on musical content that differs from that which is contained in existing annotated datasets used for neural network training, as well as in the presence of challenging musical conditions such as rubato. In this paper, we positioned our approach to beat tracking from a real-world perspective where an end-user targets very high accuracy on specific music pieces and for which the current state of the art is not effective. To this end, we explored the use of targeted fine-tuning of a state-of-the-art deep neural network based on a very limited temporal region of annotated beat locations. We demonstrated the success of our approach via improved performance across existing annotated datasets and a new annotation-correction approach for evaluation. Furthermore, we highlighted the ability of content-specific fine-tuning to learn both what is and what is not the beat in challenging musical conditions.

2023

Challenging Beat Tracking: Tackling Polyrhythm, Polymetre, and Polytempo with Human-in-the-Loop Adaptation

Authors
Pinto, AS; Bernardes, G; Davies, MEP;

Publication
Music and Sound Generation in the AI Era - 16th International Symposium, CMMR 2023, Tokyo, Japan, November 13-17, 2023, Revised Selected Papers

Abstract
Deep-learning beat-tracking algorithms have achieved remarkable accuracy in recent years. However, despite these advancements, challenges persist with musical examples featuring complex rhythmic structures, especially given their under-representation in training corpora. Expanding on our prior work, this paper demonstrates how our user-centred beat-tracking methodology effectively handles increasingly demanding musical scenarios. We evaluate its adaptability and robustness through musical pieces that exhibit rhythmic dissonance, while maintaining ease of integration with leading methods through minimal user annotations. The selected musical works—Uruguayan Candombe, Colombian Bambuco, and Steve Reich’s Piano Phase—present escalating levels of rhythmic complexity through their respective polyrhythm, polymetre, and polytempo characteristics. These examples not only validate our method’s effectiveness but also demonstrate its capability across increasingly challenging scenarios, culminating in the novel application of beat tracking to polytempo contexts. The results show notable improvements in terms of the F-measure, ranging from 2 to 5 times the state-of-the-art performance. The beat annotations used in fine-tuning reduce the correction edit operations from 1.4 to 2.8 times, while reducing the global annotation effort to between 16% and 37% of the baseline approach. Our experiments demonstrate the broad applicability of our human-in-the-loop strategy in the domain of Computational Ethnomusicology, confronting the prevalent Music Information Retrieval (MIR) constraints found in non-Western musical scenarios. Beyond beat tracking and computational rhythm analysis, this user-driven adaptation framework suggests wider implications for various MIR technologies, particularly in scenarios where musical signal ambiguity and human subjectivity challenge conventional algorithms. © 2025 Elsevier B.V., All rights reserved.

2023

Towards Human-in-the-Loop Computational Rhythm Analysis in Challenging Musical Conditions

Authors
António Humberto e Sá Pinto;

Publication

Abstract

2020

Shift If You Can: Counting and Visualising Correction Operations for Beat Tracking Evaluation

Authors
Pinto, AS; Domingues, I; Davies, MEP;

Publication
CoRR

Abstract