2018
Authors
Calvillo C.; Sanchez-Miralles A.; Villar J.;
Publication
IEEE Transactions on Intelligent Transportation Systems
Abstract
Transport systems and buildings are among the bigger energy users inside cities. Abundant research has been developed about these systems (facilities and transport). However, synergies among them are commonly overlooked, not taking advantage of the possible benefits of their joint coordination and management. This paper presents a linear programming model to find the optimal operation and planning of distributed energy resources (DER) in a residential district, while considering electric private and public transport systems, in particular electric vehicles and metro. Hence, the main contribution of this paper is the analysis of synergies of such an interconnected scheme. It has been assumed that part of the metro regenerative braking energy can be stored into electric vehicles' (EVs') batteries, so that it can be used later for other trains or for the EV itself. Several case studies have been proposed using data from a residential district and a metro line in Madrid. The obtained results show important cost savings in the overall system, especially a significant power cost reduction for the metro system.
2022
Authors
Mello, J; Villar, J; Saraiva, JT;
Publication
International Conference on the European Energy Market, EEM
Abstract
This paper proposes a real time Walrasian based market design for local electricity trading, considering the roles of the different players, the settlement procedures, and the necessary balance responsibilities with the wholesale market under collective self-consumption rules. A Walrasian mechanism based on consecutive auctions for very short delivery periods is proposed, where the auctioneer defines a price for each of these delivery periods to which peers react by generating and consuming accordingly and informing if they trade with the auctioneer or with their retailer or aggregator. This market has no energy purchase contracts, and energy is billed based on each peer's generation or consumption for each delivery period with the price defined by the auctioneer. © 2022 IEEE.
2022
Authors
Sampaio G.; Gouveia C.; Bessa R.; Villar J.; Retorta F.; Carvalho L.; Merckx C.; Benothman F.; Promel F.; Panteli M.; Mourão R.L.; Louro M.; Águas A.; Marques P.;
Publication
IET Conference Proceedings
Abstract
EUniversal project aims to facilitate the use of flexibility services and interlink distribution system's active management with electricity markets. Implementing market-based flexibility services implies a change in distribution network monitoring and control towards a more predictive approach. However, integrating cost-effective monitoring and control tools for the LV network is still quite challenging. Within the project, a set of operation and planning tools have been developed for a coordinated quantification and activation of flexibility in HV, MV and LV distribution networks. The paper presents the tools developed for the Portuguese pilot and shows preliminary results obtained when considering network operation scenarios characterized by large scale integration of DER and EV.
2022
Authors
Rocha, R; Retorta, F; Mello, J; Silva, R; Gouveia, C; Villar, J;
Publication
TECHNOLOGIES, MARKETS AND POLICIES: BRINGING TOGETHER ECONOMICS AND ENGINEERING
Abstract
This paper proposes an energy community management system for local energy sharing with grid flexibility services to solve the potential grid constraints of the local distribution network. A three-stage model is proposed. Stage 1 is the individual minimization of the energy bill of each prosumer by optimizing the schedules of its battery. The second stage optimizes the energy bill of the energy community by sharing internally the prosumers energy surplus and re-dispatching their batteries, while guaranteeing that each new individual prosumer energy bill is always equal or less than its stage 1 bill. The third stage is performed by the DSO to solve the grid constraints by re-dispatching the batteries, curtailing local generation or reducing consumption. Stage 3 minimizes the impact on stage 2 by minimizing the loss of profit or utility of every prosumer which is compensated accordingly.
2025
Authors
Javadi, MS; Soares, TA; Villar, JV; Faria, AS;
Publication
2025 IEEE International Conference on Environment and Electrical Engineering and 2025 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)
Abstract
This paper deals with cost-effective strategies for controlling indoor temperature using different technologies, including inverter-based and thermostatic control systems. In this regard, the indoor temperature control model incorporates instant heat loss coefficient, heat transfer capability, and heat energy conversion coefficient. The decision variable is the power setpoint of the energy conversion system, which can be operated in both cooling and heating modes. The thermal system coefficients have been estimated based on historical data for energy consumption, indoor, and outdoor temperatures of the case study presented, which are the minimal datasets required for the coefficient estimation. The inverter-based model benefits from the quasi-continuous power consumption model, while the thermostatic model has a hysteresis functionality resulting in discrete power consumption with several turn-on and turn-off modes, which can be controlled by changing the thresholds. The flexible thermal range resulted in 4.715% and 6.235% cost reductions for thermostat-based and inverter-driven heat pumps, respectively. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Rozas, LAH; Campos, FA; Villar, J;
Publication
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Abstract
Volatility in energy prices, alongside the European Commission's decarbonization strategy, has led to reforming the European electricity market and the creation of a hydrogen strategy. Hydrogen and electricity have a symbiotic relationship: hydrogen production through electrolysis relies on electricity, while its production provides flexibility to the power system utilizing renewable energy surpluses. This research provides a joint electricity and hydrogen market model based on Cournot equilibrium, solved with an equivalent optimization problem, incorporating contracts for both goods. Results for the MIBEL show that contracts increase market competition, reduce prices, and enhance renewable energy utilization. Wholesale electricity and hydrogen prices decrease by 10 % and 8 %, respectively, while electrolytic hydrogen production rises by 10 %. Profits increase by over 20 %, with the hydrogen sector doubling its gains. The model also identifies contract prices that ensure profitability and emissions reduction. These findings highlight the potential of PPAs and HPAs to support energy transition goals.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.