Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Tiago André Soares

2023

e-Carsharing siting and sizing DLMP-based under demand uncertainty

Authors
Bitencourt, L; Dias, B; Soares, T; Borba, B; Quiros Tortos, J;

Publication
APPLIED ENERGY

Abstract
Electric vehicle (EV) sales and shared mobility are increasing worldwide. Despite its challenges, e-carsharing has an opportunity to still profit in periods of low rental demand compared to traditional carsharing. The purpose of this paper is to assess the profitability of an e-carsharing company based on distribution local marginal price (DLMP) and vehicle-to-grid (V2G) that cooperates with the distribution system operator (DSO) through a two -stage stochastic model. The AC optimal power flow (ACOPF) is modeled using second-order cone program-ming (SOCP) linearized by the global polyhedral approximation. The IEEE 33 bus test system and a real Kernel distribution for the EV rental demands are used in four planning cases in the GAMS environment. The results indicate that the proposed methodology does not affect EV user satisfaction. Moreover, the planning disregarding the power grid perspective is the most profitable, but the operation may not be possible in real applications due to the high-power flows via V2G. Finally, the e-carsharing planning considering the DSO perspective increased the charging cost by 1.66 % but also reduced the DLMP peak, losses, and peak demand by 2.5 %, 1.5 %, and 5.1 %, respectively. One important conclusion is that the technical benefits brought to the DSO by the e-carsharing company could be turned into services and advantages for both agents, increasing profit and mitigating negative impacts, such as higher operational costs.

2023

Design of an Energy Policy for the Decarbonisation of Residential and Service Buildings in Northern Portugal

Authors
Capelo, S; Soares, T; Azevedo, I; Fonseca, W; Matos, MA;

Publication
ENERGIES

Abstract
The decarbonisation of the building sector is crucial for Portugal's goal of achieving economy-wide carbon neutrality by 2050. To mobilize communities towards energy efficiency measures, it is important to understand the primary drivers and barriers that must be overcome through policymaking. This paper aims to review existing Energy Policies and Actions (EPA) in Portugal and assess their effectiveness in improving Energy Efficiency (EE) and reducing CO2 emissions in the building sector. The Local Energy Planning Assistant (LEPA) tool was used to model, test, validate and compare the implementation of current and alternative EPAs in the North of Portugal, including the national EE plan. The results indicate that electrification of heating and cooling, EE measures, and the proliferation of Renewable Energy Sources (RES) are crucial for achieving climate neutrality. The study found that the modelling of alternative EPAs can be improved to reduce investment costs and increase Greenhouse Gas (GHG) emissions reduction. Among the alternatives assessed, the proposed one (Alternative 4) presents the best returns on investment in terms of cost savings and emissions reduction. It allows for 52% investment cost savings in the residential sector and 13% in the service sector when compared to the current national roadmap to carbon neutrality (Alternative 2). The estimated emission reduction in 2050 for Alternative 4 is 0.64% for the residential sector and 3.2% for the service sector when compared to Alternative 2.

2023

Distributed Network-Constrained P2P Community-Based Market for Distribution Networks

Authors
Oliveira, C; Simoes, M; Bitencourt, L; Soares, T; Matos, MA;

Publication
ENERGIES

Abstract
Energy communities have been designed to empower consumers while maximizing the self-consumption of local renewable energy sources (RESs). Their presence in distribution systems can result in strong modifications in the operation and management of such systems, moving from a centralized operation to a distributed one. In this scope, this work proposes a distributed community-based local energy market that aims at minimizing the costs of each community member, accounting for the technical network constraints. The alternating direction method of multipliers (ADMM) is adopted to distribute the market, and preserve, as much as possible, the privacy of the prosumers' assets, production, and demand. The proposed method is tested on a 10-bus medium voltage radial distribution network, in which each node contains a large prosumer, and the relaxed branch flow model is adopted to model the optimization problem. The market framework is proposed and modeled in a centralized and distributed fashion. Market clearing on a day-ahead basis is carried out taking into account actual energy exchanges, as generation from renewable sources is uncertain. The comparison between the centralized and distributed ADMM approach shows an 0.098% error for the nodes' voltages. The integrated OPF in the community-based market is a computational burden that increases the resolution of the market dispatch problem by about eight times the computation time, from 200.7 s (without OPF) to 1670.2 s. An important conclusion is that the proposed market structure guarantees that P2P exchanges avoid the violation of the network constraints, and ensures that community agents' can still benefit from the community-based architecture advantages.

  • 14
  • 14