2024
Authors
Carneiro, GA; Santos, J; Sousa, JJ; Cunha, A; Pádua, L;
Publication
DRONES
Abstract
Precision agriculture (PA) has advanced agricultural practices, offering new opportunities for crop management and yield optimization. The use of unmanned aerial vehicles (UAVs) in PA enables high-resolution data acquisition, which has been adopted across different agricultural sectors. However, its application for decision support in chestnut plantations remains under-represented. This study presents the initial development of a methodology for segmenting chestnut burrs from UAV-based imagery to estimate its productivity in point cloud data. Deep learning (DL) architectures, including U-Net, LinkNet, and PSPNet, were employed for chestnut burr segmentation in UAV images captured at a 30 m flight height, with YOLOv8m trained for comparison. Two datasets were used for training and to evaluate the models: one newly introduced in this study and an existing dataset. U-Net demonstrated the best performance, achieving an F1-score of 0.56 and a counting accuracy of 0.71 on the proposed dataset, using a combination of both datasets during training. The primary challenge encountered was that burrs often tend to grow in clusters, leading to unified regions in segmentation, making object detection potentially more suitable for counting. Nevertheless, the results show that DL architectures can generate masks for point cloud segmentation, supporting precise chestnut tree production estimation in future studies.
2024
Authors
Teixeira, AC; Bakon, M; Perissin, D; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Since the 1970s, extensive halite extraction in Macei & oacute;, Brazil, has resulted in significant geological risks, including ground collapses, sinkholes, and infrastructure damage. These risks became particularly evident in 2018, following an earthquake, which prompted the cessation of mining activities in 2019. This study investigates subsidence deformation resulting from these mining operations, focusing on the collapse of Mine 18 on 10 December 2023. We utilized the Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPS-InSAR) technique to analyze a dataset of 145 Sentinel-1A images acquired between June 2019 and April 2024. Our approach enabled the analysis of cumulative displacement, the loss of amplitude stability, the evolution of amplitude time series, and the amplitude change matrix of targets near Mine 18. The study introduces an innovative QPS-InSAR approach that integrates phase and amplitude information using amplitude time series to assess the lifecycle of radar scattering targets throughout the monitoring period. This method allows for effective change detection following sudden events, enabling the identification of affected areas. Our findings indicate a maximum cumulative displacement of -1750 mm, with significant amplitude changes detected between late November and early December 2023, coinciding with the mine collapse. This research provides a comprehensive assessment of deformation trends and ground stability in the affected mining areas, providing valuable insights for future monitoring and risk mitigation efforts.
2024
Authors
Ferreira, L; Sousa, JJ; Lourenço, JM; Peres, E; Morais, R; Pádua, L;
Publication
SENSORS
Abstract
Understanding geometric and biophysical characteristics is essential for determining grapevine vigor and improving input management and automation in viticulture. This study compares point cloud data obtained from a Terrestrial Laser Scanner (TLS) and various UAV sensors including multispectral, panchromatic, Thermal Infrared (TIR), RGB, and LiDAR data, to estimate geometric parameters of grapevines. Descriptive statistics, linear correlations, significance using the F-test of overall significance, and box plots were used for analysis. The results indicate that 3D point clouds from these sensors can accurately estimate maximum grapevine height, projected area, and volume, though with varying degrees of accuracy. The TLS data showed the highest correlation with grapevine height (r = 0.95, p < 0.001; R2 = 0.90; RMSE = 0.027 m), while point cloud data from panchromatic, RGB, and multispectral sensors also performed well, closely matching TLS and measured values (r > 0.83, p < 0.001; R2 > 0.70; RMSE < 0.084 m). In contrast, TIR point cloud data performed poorly in estimating grapevine height (r = 0.76, p < 0.001; R2 = 0.58; RMSE = 0.147 m) and projected area (r = 0.82, p < 0.001; R2 = 0.66; RMSE = 0.165 m). The greater variability observed in projected area and volume from UAV sensors is related to the low point density associated with spatial resolution. These findings are valuable for both researchers and winegrowers, as they support the optimization of TLS and UAV sensors for precision viticulture, providing a basis for further research and helping farmers select appropriate technologies for crop monitoring.
2024
Authors
Padua, L; Castro, JP; Castro, J; Sousa, JJ; Castro, M;
Publication
DRONES
Abstract
Climate change has intensified the need for robust fire prevention strategies. Sustainable forest fuel management is crucial in mitigating the occurrence and rapid spread of forest fires. This study assessed the impact of vegetation clearing and/or grazing over a three-year period in the herbaceous and shrub parts of a Mediterranean oak forest. Using high-resolution multispectral data from an unmanned aerial vehicle (UAV), four flight surveys were conducted from 2019 (pre- and post-clearing) to 2021. These data were used to evaluate different scenarios: combined vegetation clearing and grazing, the individual application of each method, and a control scenario that was neither cleared nor purposely grazed. The UAV data allowed for the detailed monitoring of vegetation dynamics, enabling the classification into arboreal, shrubs, herbaceous, and soil categories. Grazing pressure was estimated through GPS collars on the sheep flock. Additionally, a good correlation (r = 0.91) was observed between UAV-derived vegetation volume estimates and field measurements. These practices proved to be efficient in fuel management, with cleared and grazed areas showing a lower vegetation regrowth, followed by areas only subjected to vegetation clearing. On the other hand, areas not subjected to any of these treatments presented rapid vegetation growth.
2023
Authors
Stolarski, O; Lourenço, JM; Peres, E; Morais, R; Sousa, JJ; Pádua, L;
Publication
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.
Abstract
Data acquisition through unmanned aerial vehicles (UAVs) has become integral to the study of agricultural crops, especially for multitemporal analyses spanning the entire growing season. Ensuring accurate data alignment is essential not only to maintain data quality but also to leverage the continuous monitoring of the same area over time. Ground control points (GCPs) play a critical role in geolocating UAV data. Their absence can lead to planimetric and altimetric discrepancies, which are particularly impactful in 3D plant-level studies. This study is centered on the examination of misalignment effects in a challenging steep slope vineyard environment and their impacts on 3D alignment accuracy. For this purpose, a UAV equipped with an RGB camera to capture imagery at two distinct flight heights. Various scenarios, each involving a different number of GCPs, were assessed to evaluate their impact on alignment precision. The methodology employed holds potential for assessing geolocation accuracy in complex 3D environments, providing value insights for vineyard monitoring. © 2024 The Author(s). Published by Elsevier B.V.
2024
Authors
Guimaraes, N; Sousa, JJ; Couto, P; Bento, A; Padua, L;
Publication
REMOTE SENSING
Abstract
Understanding and accurately predicting stomatal conductance in almond orchards is critical for effective water-management strategies, especially under challenging climatic conditions. In this study, machine-learning (ML) regression models trained on multispectral (MSP) and thermal infrared (TIR) data acquired from unmanned aerial vehicles (UAVs) are used to address this challenge. Through an analysis of spectral indices calculated from UAV-based data and feature-selection methods, this study investigates the predictive performance of three ML models (extra trees, ET; stochastic gradient descent, SGD; and extreme gradient boosting, XGBoost) in predicting stomatal conductance. The results show that the XGBoost model trained with both MSP and TIR data had the best performance (R2 = 0.87) and highlight the importance of integrating surface-temperature information in addition to other spectral indices to improve prediction accuracy, up to 11% more when compared to the use of only MSP data. Key features, such as the green-red vegetation index, chlorophyll red-edge index, and the ratio between canopy temperature and air temperature (Tc-Ta), prove to be relevant features for model performance and highlight their importance for the assessment of water stress dynamics. Furthermore, the implementation of Shapley additive explanations (SHAP) values facilitates the interpretation of model decisions and provides valuable insights into the contributions of the features. This study contributes to the advancement of precision agriculture by providing a novel approach for stomatal conductance prediction in almond orchards, supporting efforts towards sustainable water management in changing environmental conditions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.