2024
Authors
Vanhoucke, M; Coelho, J;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
This paper presents a matheuristic solution algorithm to solve the well-known resource-constrained project scheduling problem (RCPSP). The problem makes use of a restricted neighbourhood method using an activity selection and a search space restriction module and implements them as two alternative search algorithms. The first algorithm makes use of the best-performing components of the branch-and-bound procedures from the literature, and embeds them into a greedy neighbourhood search. The second matheuristic implements the exact branch-and-bound procedures into a known and well-performing meta-heuristic search algorithm. Computational experiments have been carried out on seven different datasets consisting of 10,000+ project instances. Experiments reveal that the choice of exact algorithm is key in finding high-quality solutions, and illustrate that the trade-off between selecting an activity set size and search space restriction depends on the specific implementation. The computational tests demonstrate that the matheuristic discovered 24 new best known solutions that could not be found by either a meta-heuristic or an exact method individually. Moreover, a new benchmark dataset has been proposed that can be used to develop new matheuristic search procedures to solve the problem consisting of 461 instances from the literature.
2024
Authors
Servranckx, T; Coelho, J; Vanhoucke, M;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
This study evaluates a new solution approach for the Resource -Constrained Project Scheduling with Alternative Subgraphs (RCPSP-AS) in case that complex relations (i.e. nested and linked alternatives) are considered. In the RCPSP-AS, the project activity structure is extended with alternative activity sequences. This implies that only a subset of all activities should be scheduled, which corresponds with a set of activities in the project network that model an alternative execution mode for a work package. Since only the selected activities should be scheduled, the RCPSP-AS comes down to a traditional RCPSP problem when the selection subproblem is solved. It is known that the RCPSP and, hence, its extension to the RCPSP-AS is NP -hard. Since similar scheduling and selection subproblems have already been successfully solved by satisfiability (SAT) solvers in the existing literature, we aim to test the performance of a GA -SAT approach that is derived from the literature and adjusted to be able to deal with the problem -specific constraints of the RCPSP-AS. Computational results on smalland large-scale instances (both artificial and empirical) show that the algorithm can compete with existing metaheuristic algorithms from the literature. Also, the performance is compared with an exact mathematical solver and learning behaviour is observed and analysed. This research again validates the broad applicability of SAT solvers as well as the need to search for better and more suited algorithms for the RCPSP-AS and its extensions.
2024
Authors
Vanhoucke, M; Coelho, J;
Publication
COMPUTERS & OPERATIONS RESEARCH
Abstract
This paper present an instance transformation procedure to modify known instances of the resource -constrained project scheduling problem to make them easier to solve by heuristic and/or exact solution algorithms. The procedure makes use of a set of transformation rules that aim at reducing the feasible search space without excluding at least one possible optimal solution. The procedure will be applied to a set of 11,183 instances and it will be shown by a set of experiments that these transformations lead to 110 improved lower bounds, 16 new and better schedules (found by three meta -heuristic procedures and a set of branch -and -bound procedures) and even 64 new optimal solutions which were never not found before.
2024
Authors
Van Eynde, R; Vanhoucke, M; Coelho, J;
Publication
ANNALS OF OPERATIONS RESEARCH
Abstract
The resource-constrained project scheduling problem is a widely studied problem in the literature. The goal is to construct a schedule for a set of activities, such that precedence and resource constraints are respected and that an objective function is optimized. In project scheduling literature, summary measures are often used as a tool to evaluate the performance of algorithms and to analyze instances and datasets. They can be classified in two groups, network measures describe the precedence constraints of a project, while resource measures focus on the resource constraints of the instance. In this manuscript we make an exhaustive evaluation of the summary measures for project scheduling. We provide an overview of the most prevalent measures and also introduce some new ones. For our tests we combine different datasets from the literature and generate a new set with diverse characteristics. We evaluate the performance of the summary measures on three dimensions: consistency, instance complexity and algorithm selection. We conclude by providing an overview of which measures are best suited for each of the three investigated dimensions.
2003
Authors
Tavares, LV; Pereira, MJ; Coelho, JS;
Publication
TOWARDS THE KNOWLEDGE SOCIETY: E-COMMERCE, E-BUSINESS, AND E-GOVERNMENT
Abstract
The lack of dynamic double-side regulation models for E-Marketplaces is a main reason for their lack of success as advanced open trading places.In this paper, a new model - DYNEX - is developed to generate homogeneous markets of goods or services and to optimize for each homogeneous market the trading price and the negotiation process between buyers and sellers.
2004
Authors
Tavares, LV; Ferreira, JA; Coelho, JS;
Publication
Int Trans Operational Res - International Transactions in Operational Research
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.