Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2025

Real-Time Registration of 3D Underwater Sonar Scans

Authors
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publication
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Authors
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Authors
Claro, RM; Neves, FSP; Pinto, AMG;

Publication
Journal of Field Robotics

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.

2025

The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean

Authors
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Camilo, A; Silva, E;

Publication
EARTH SYSTEM SCIENCE DATA

Abstract
A unique dataset of marine atmospheric electric field observations over the Atlantic Ocean is described. The data are relevant not only for atmospheric electricity studies, but more generally for studies of the Earth's atmosphere and climate variability, as well as space-Earth interaction studies. In addition to the atmospheric electric field data, the dataset includes simultaneous measurements of other atmospheric variables, including gamma radiation, visibility, and solar radiation. These ancillary observations not only support interpretation and understanding of the atmospheric electric field data, but also are of interest in themselves. The entire framework from data collection to final derived datasets has been duly documented to ensure traceability and reproducibility of the whole data curation chain. All the data, from raw measurements to final datasets, are preserved in data repositories with a corresponding assigned DOI. Final datasets are available from the Figshare repository (https://figshare.com/projects/SAIL_Data/178500, ), and computational notebooks containing the code used at every step of the data curation chain are available from the Zenodo repository (https://zenodo.org/communities/sail, Project SAIL community, 2025).

2025

Identification and explanation of disinformation in wiki data streams

Authors
Arriba Pérez, Fd; García Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;

Publication
Integrated Computer-Aided Engineering

Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers’ critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model’s prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.

2025

Engineering a Sustainable Future with EPS@ISEP

Authors
Malheiro, B; Guedes, P;

Publication
World Sustainability Series

Abstract
The challenge of engineering education is to transform engineering students into agents of innovation and well-being. In addition to solid scientific and technical knowledge, critical thinking, problem-solving and interpersonal competencies, it implies the ability to design and implement solutions supported by ethical and sustainability principles. With this goal in mind, the European Project Semester (EPS) provides a student-centred project-based learning framework. It is offered by a group of European higher education institutions, including the Instituto Superior de Engenharia do Porto (ISEP), the engineering school of the Polytechnic of Porto. Students work in teams of four to six, from different fields of study and nationalities, to design solutions to problems that affect individuals, society or the planet, taking into account the state of the art, the market and the ethical and sustainability implications of their decisions. These solutions are then implemented in a proof-of-concept prototype. Most of the projects address problems in education, the environment, food production and smart cities and have a strong educational, ethical and sustainability drive, encouraging students to develop sustainability competencies. This work analyses team papers of illustrative EPS@ISEP projects searching for evidences of the development of sustainability competencies. The proposed method maps keywords related to the sixteen United Nations Sustainable Development Goals to the contents of team papers by applying natural language processing and reusing the list of SDG keywords proposed by Auckland University. The results confirm EPS@ISEP fosters sustainability competencies in engineering undergraduates. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 1
  • 181