2021
Authors
Matias, M; Almeida, F; Moura, R; Barraca, N;
Publication
CONSTRUCTION AND BUILDING MATERIALS
Abstract
Rehabilitation, restoration and maintenance of monuments, heritage and buildings pose challenging tasks to engineers and architects, as any intervention must respect their architectural and constructive characteristics. Often these are unknown and sources of information have long been lost in time. Thus, there is a need to use methods capable of providing information on a wide range of aspects such as building foundations, construction characteristics and materials, alterations from the original layout, infrastructure mapping, pathologies, etc. These methods must respect the inherent structural delicacy and characteristics of ancient buildings and non-destructive methods, NDT such as geophysical methods, have been proposed to investigate these problems. It is common knowledge that a single geophysical method cannot provide full information on the problems to investigate. Thus, herein the combined use of Seismic Transmission Tomography and Ground Penetrating Radar - GPR - is demonstrated to provide important results in the investigation of the constructive elements (columns and walls) of a 14th century UNESCO monument. As demonstrated, high-resolution geophysical data obtained from both methods provide very good images of the interior of both walls and columns giving information on the quality and spatial distribution of the materials used in the construction of the monument. Finally, the results herein discussed prove the suitability and complementarity of these two methods to investigate, built heritage, monuments and buildings in general.
2021
Authors
Freire, TF; Quinaz, T; Fertuzinhos, A; Quyen, NT; de Moura, MFSM; Martins, M; Zille, A; Dourado, N;
Publication
POLYMERS
Abstract
Poly(vinyl alcohol) (PVA) in multifilament and braided yarns (BY) forms presents great potential for the design of numerous applications. However, such solutions fail to accomplish their requirements if the chemical and thermomechanical behaviour is not sufficiently known. Hence, a comprehensive characterisation of PVA multifilament and three BY architectures (6, 8, and 10 yarns) was performed involving the application of several techniques to evaluate the morphological, chemical, thermal, and mechanical features of those structures. Scanning electron microscopy (SEM) was used to reveal structural and morphological information. Differential thermal analysis (DTA) pointed out the glass transition temperature of PVA at 76 & DEG;C and the corresponding crystalline melting point at 210 & DEG;C. PVA BY exhibited higher tensile strength under monotonic quasi-static loading in comparison to their multifilament forms. Creep tests demonstrated that 6BY structures present the most deformable behaviour, while 8BY structures are the least deformable. Relaxation tests showed that 8BY architecture presents a more expressive variation of tensile stress, while 10BY offered the least. Dynamic mechanical analysis (DMA) revealed storage and loss moduli curves with similar transition peaks for the tested structures, except for the 10BY. Storage modulus is always four to six times higher than the loss modulus.
2021
Authors
Rocha, J; Matos, T; Martins, M; Lopes, S; Gomes, P; Henriques, R; Goncalves, L;
Publication
OCEANS 2021: San Diego – Porto
Abstract
2021
Authors
Faria, C; Martins, M; Lima, R; Matos, T; Miranda, J; Goncalves, L;
Publication
OCEANS 2021: San Diego – Porto
Abstract
2021
Authors
Penso, C; Rocha, J; Martins, M; Sousa, P; Pinto, V; Minas, G; Silva, MM; Goncalves, L;
Publication
OCEANS 2021: San Diego – Porto
Abstract
2021
Authors
Paleo, AJ; Samir, Z; Aribou, N; Nioua, Y; Martins, MS; Cerqueira, MF; Moreira, JA; Achour, ME;
Publication
European Physical Journal E
Abstract
Abstract: In this work, different weight contents of as-grown carbon nanofibers (CNFs), produced by chemical vapor deposition, were melt-extruded with polypropylene (PP) and their morphologic, structure and dielectric properties examined. The morphologic analysis reveals that the CNFs are randomly distributed in the form of agglomerates within the PP matrix, whereas the structural results depicted by Raman analysis suggest that the degree of disorder of the as-received CNFs was not affected in the PP/CNF composites. The AC conductivity of PP/CNF composites at room temperature evidenced an insulator–conductor transition in the vicinity of 2 wt.%, corresponding to a remarkable rise of the dielectric permittivity up to ~ 12 at 400 Hz, with respect to the neat PP (~ 2.5). Accordingly, the AC conductivity and dielectric permittivity of PP/CNF 2 wt.% composites were evaluated by using power laws and discussed in the framework of the intercluster polarization model. Finally, the complex impedance and Nyquist plots of the PP/CNF composites are analyzed by using equivalent circuit models, consisting of a constant phase element (CPE). The analysis gathered in here aims at contributing to the better understanding of the enhanced dielectric properties of low-conducting polymer composites filled with carbon nanofibers. Graphic abstract: [Figure not available: see fulltext.]. © 2021, The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.