Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CSE

2022

DEEP LEARNING APPROACH FOR TERRACE VINEYARDS DETECTION FROM GOOGLE EARTH SATELLITE IMAGERY

Authors
Figueiredo, N; Neto, A; Cunha, A; Sousa, JJ; Sousa, A;

Publication
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022)

Abstract
On rugged slopes overlooking the Douro River we find the Alto Douro Wine Region in Portugal, populated by plantations in schist lands of difficult access and mostly manual work. The combined features of this region are a source of motivation to explore remote sensing techniques associated with artificial intelligence. In this paper, a preliminary approach for terrace vineyards detection is presented. This is a key-enabling task towards the achievement of important goals such as multi-temporal crop evaluation and cultures characterization. The proposed methodology consists in the application of a deep learning model (U-net) to detect the terrace vineyards using satellite images dataset acquired with Google Earth Pro. The proposed methodology showed very promising detection capabilities.

2022

Cappella: Establishing Multi-User Augmented Reality Sessions Using Inertial Estimates and Peer-to-Peer Ranging

Authors
Miller J.; Soltanaghai E.; Duvall R.; Chen J.; Bhat V.; Pereira N.; Rowe A.;

Publication
Proceedings - 21st ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2022

Abstract
Current collaborative augmented reality (AR) systems establish a common localization coordinate frame among users by exchanging and comparing maps comprised of feature points. However, relative positioning through map sharing struggles in dynamic or feature-sparse environments. It also requires that users exchange identical regions of the map, which may not be possible if they are separated by walls or facing different directions. In this paper, we present Cappella11Like its musical inspiration, Cappella utilizes collaboration among agents to forgo the need for instrumentation, an infrastructure-free 6-degrees-of-freedom (6DOF) positioning system for multi-user AR applications that uses motion estimates and range measurements between users to establish an accurate relative coordinate system. Cappella uses visual-inertial odometry (VIO) in conjunction with ultra-wideband (UWB) ranging radios to estimate the relative position of each device in an ad hoc manner. The system leverages a collaborative particle filtering formulation that operates on sporadic messages exchanged between nearby users. Unlike visual landmark sharing approaches, this allows for collaborative AR sessions even if users do not share the same field of view, or if the environment is too dynamic for feature matching to be reliable. We show that not only is it possible to perform collaborative positioning without infrastructure or global coordinates, but that our approach provides nearly the same level of accuracy as fixed infrastructure approaches for AR teaming applications. Cappella consists of an open source UWB firmware and reference mobile phone application that can display the location of team members in real time using mobile AR. We evaluate Cappella across mul-tiple buildings under a wide variety of conditions, including a contiguous 30,000 square foot region spanning multiple floors, and find that it achieves median geometric error in 3D of less than 1 meter.

2022

Zipping Strategies and Attribute Grammars

Authors
Macedo, JN; Viera, M; Saraiva, J;

Publication
Functional and Logic Programming - 16th International Symposium, FLOPS 2022, Kyoto, Japan, May 10-12, 2022, Proceedings

Abstract
Strategic term rewriting and attribute grammars are two powerful programming techniques widely used in language engineering. The former relies on strategies (recursion schemes) to apply term rewrite rules in defining transformations, while the latter is suitable for expressing context-dependent language processing algorithms. Each of these techniques, however, is usually implemented by its own powerful and large processor system. As a result, it makes such systems harder to extend and to combine. We present the embedding of both strategic tree rewriting and attribute grammars in a zipper-based, purely functional setting. The embedding of the two techniques in the same setting has several advantages: First, we easily combine/zip attribute grammars and strategies, thus providing language engineers the best of the two worlds. Second, the combined embedding is easier to maintain and extend since it is written in a concise and uniform setting. We show the expressive power of our library in optimizing Haskell let expressions, expressing several Haskell refactorings and solving several language processing tasks for an Oberon-0 compiler. © 2022, Springer Nature Switzerland AG.

2022

A Flexible HLS Hoeffding Tree Implementation for Runtime Learning on FPGA

Authors
Sousa, LM; Paulino, N; Ferreira, JC; Bispo, J;

Publication
2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022)

Abstract
Decision trees are often preferred when implementing Machine Learning in embedded systems for their simplicity and scalability. Hoeffding Trees are a type of Decision Trees that take advantage of the Hoeffding Bound to allow them to learn patterns in data without having to continuously store the data samples for future reprocessing. This makes them especially suitable for deployment on embedded devices. In this work we highlight the features of a HLS implementation of the Hoeffding Tree. The implementation parameters include the feature size of the samples (D), the number of output classes (K), and the maximum number of nodes to which the tree is allowed to grow (Nd). We target a Xilinx MPSoC ZCU102, and evaluate: the design's resource requirements and clock frequency for different numbers of classes and feature size, the execution time on several synthetic datasets of varying sizes (N) and the execution time and accuracy for two datasets from UCI. For a problem size of D=3, K=5, and N=40000, a single decision tree operating at 103MHz is capable of 8.3x faster inference than the 1.2 GHz ARM Cortex-A53 core. Compared to a reference implementation of the Hoeffding tree, we achieve comparable classification accuracy for the UCI datasets.

2022

ProGenVR: Natural Interactions for Procedural Content Generation in VR

Authors
Carvalho, B; Mendes, D; Coelho, A; Rodrigues, R;

Publication
ICAT-EGVE 2022, International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments, Hiyoshi, Yokohama, Japan, November 30 - December 3, 2022.

Abstract

2022

Inbreeding and research collaborations in Portuguese higher education

Authors
Tavares, O; Sin, C; Sa, C; Bugla, S; Amaral, A;

Publication
HIGHER EDUCATION QUARTERLY

Abstract
The aim of this paper is to analyse the relationship between academic inbreeding in Portugal and research collaboration, using co-authored publications as proxies. As previous research has shown that inbreeding is detrimental for research collaborations, it is hypothesised that academic inbreeding will lead to smaller research networks and, consequently, to fewer co-authored publications outside the institution of affiliation. Relying on a large data set which merged information on academics, their inbreeding status and their publications, binomial negative and fractional models were estimated to test the hypothesis. Findings show that inbred academics have smaller research networks; while they publish most co-authored papers, the relative weight of publications written in collaboration with institutional colleagues is the highest. In contrast, non-inbred academics with foreign PhDs have larger co-authorship networks. However, they publish most single-authored papers and the weight of their international co-authorships is heaviest.

  • 44
  • 217