Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2025

Wavelet-Based Discriminant Feature Analysis of Marine Plastic Litter Spectra and Matching via Magnitude Gradient Cosine Similarity

Authors
Maravalhas-Silva, J; Cruz, NA;

Publication
OCEANS 2025 - Great Lakes

Abstract

2025

Real-Time Registration of 3D Underwater Sonar Scans

Authors
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publication
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2025

Raya: A Bio-Inspired AUV for Inspection and Intervention of Underwater Structures

Authors
Pereira, P; Silva, R; Marques, JVA; Campilho, R; Matos, A; Pinto, AM;

Publication
IEEE ACCESS

Abstract
This work presents a bio-inspired Autonomous Underwater Vehicle (AUV) concept called Raya that enables high manoeuvrability required for close-range inspection and intervention tasks, while fostering endurance for long-range operations by enabling efficient navigation. The AUV has an estimated terminal velocity of 0.82 m/s in an optimal environment, and a capacity to acquire visual data and sonar measurements in all directions. Raya was designed with the potential to incorporate an electric manipulator arm of 6 degrees of freedom (DoF) for free-floating underwater intervention. Smart and biologically inspired principles applied to morphology and a strategic thruster configuration assure that Raya is capable of manoeuvring in all 6 DoFs even when equipped with a manipulator with a 5 kg payload. Extensive experiments were conducted using simulation tools and real-life environments to validate Raya's requirements and functionalities. The stresses and displacements of the rigid bodies were analysed using finite element analysis (FEA), and an estimation of the terminal forward velocity was achieved using a dynamic model. To assess the accuracy of the perception system, a reconstruction task took place in an indoor pool, resulting in a 3D reconstruction with average length, width, and depth errors below 1. 5%. The deployment of Raya in the ATLANTIS Coastal Testbed and Porto de Leix & otilde;es allowed the validation of the propulsion system and the gathering of valuable 2D and 3D data, thus proving the suitability of the vehicle for operation and maintenance (O&M) activities of underwater structures.

2025

The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean

Authors
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Camilo, A; Silva, E;

Publication
EARTH SYSTEM SCIENCE DATA

Abstract
A unique dataset of marine atmospheric electric field observations over the Atlantic Ocean is described. The data are relevant not only for atmospheric electricity studies, but more generally for studies of the Earth's atmosphere and climate variability, as well as space-Earth interaction studies. In addition to the atmospheric electric field data, the dataset includes simultaneous measurements of other atmospheric variables, including gamma radiation, visibility, and solar radiation. These ancillary observations not only support interpretation and understanding of the atmospheric electric field data, but also are of interest in themselves. The entire framework from data collection to final derived datasets has been duly documented to ensure traceability and reproducibility of the whole data curation chain. All the data, from raw measurements to final datasets, are preserved in data repositories with a corresponding assigned DOI. Final datasets are available from the Figshare repository (https://figshare.com/projects/SAIL_Data/178500, ), and computational notebooks containing the code used at every step of the data curation chain are available from the Zenodo repository (https://zenodo.org/communities/sail, Project SAIL community, 2025).

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Authors
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

2025

Data fusion approach for unmodified UAV tracking with vision and mmWave Radar

Authors
Amaral, G; Martins, JJ; Martins, P; Dias, A; Almeida, J; Silva, E;

Publication
2025 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS, ICUAS

Abstract
The knowledge of the precise 3D position of a target in tracking applications is a fundamental requirement. The lack of a low-cost single sensor capable of providing the three-dimensional position (of a target) makes it necessary to use complementary sensors together. This research presents a Local Positioning System (LPS) for outdoor scenarios, based on a data fusion approach for unmodified UAV tracking, combining a vision sensor and mmWave radar. The proposed solution takes advantage of the radar's depth observation ability and the potential of a neural network for image processing. We have evaluated five data association approaches for radar data cluttered to get a reliable set of radar observations. The results demonstrated that the estimated target position is close to an exogenous ground truth obtained from a Visual Inertial Odometry (VIO) algorithm executed onboard the target UAV. Moreover, the developed system's architecture is prepared to be scalable, allowing the addition of other observation stations. It will increase the accuracy of the estimation and extend the actuation area. To the best of our knowledge, this is the first work that uses a mmWave radar combined with a camera and a machine learning algorithm to track a UAV in an outdoor scenario.

  • 2
  • 179