Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2014

Using evolutionary algorithms to plan automatic minehunting operations

Authors
Abreu, N; Matos, A;

Publication
ICINCO 2014 - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics

Abstract
While autonomous underwater vehicles (AUVs) are increasingly being used to perform mine countermeasures (MCM) operations, the capability of these systems is limited by the efficiency of the planning process. In this paper we study the problem of multiobjective MCM mission planning with an AUV. In order to overcome the inherent complexity of the problem, a multi-stage algorithm is proposed and evaluated. Our algorithm combines an evolutionary algorithm (EA) with a local search procedure based on simulated annealing (SA), aiming at a more flexible and effective exploration and exploitation of the search space. An artificial neural network (ANN) model was also integrated in the evolutionary procedure to guide the search. The results show that the proposed strategy can efficiently identify a higher quality solution set and solve the mission planning problem.

2014

Water jet based autonomous surface vehicle for coastal waters operations

Authors
Machado, D; Martins, A; Almeida, JM; Ferreira, H; Amaral, G; Ferreira, B; Matos, A; Silva, E;

Publication
2014 OCEANS - ST. JOHN'S

Abstract
This paper presents the design of low cost, small autonomous surface vehicle for missions in the coastal waters and specifically for the challenging surf zone. The main objective of the vehicle design described in this paper is to address both the capability of operation at sea in relative challenging conditions and maintain a very low set of operational requirements (ease of deployment). This vehicle provides a first step towards being able to perform general purpose missions (such as data gathering or patrolling) and to at least in a relatively short distances to be able to be used in rescue operations (with very low handling requirements) such as carrying support to humans on the water. The USV is based on a commercially available fiber glass hull, it uses a directional waterjet powered by an electrical brushless motor for propulsion, thus without any protruding propeller reducing danger in rescue operations. Its small dimensions (1.5 m length) and weight allow versatility and ease of deployment. The vehicle design is described in this paper both from a hardware and software point of view. A characterization of the vehicle in terms of energy consumption and performance is provided both from test tank and operational scenario tests. An example application in search and rescue is also presented and discussed with the integration of this vehicle in the European ICARUS (7th framework) research project addressing the development and integration of robotic tools for large scale search and rescue operations.

2014

Tracking of an underwater visual target with an autonomous surface vehicle

Authors
Figueiredo, AB; Ferreira, BM; Matos, AC;

Publication
2014 OCEANS - ST. JOHN'S

Abstract
This paper presents the development of a first approach to a vision-based target detection. The ultimate objective of this work is to position an autonomous surface vehicle relative to a target. Experiments in a controlled indoor environment were conducted to test the developed system. The experimental results are analyzed and show that the tracking performances achieve errors in the order of a few centimetres.

2014

Designing search and rescue robots towards realistic user requirements

Authors
Doroftei, D; Matos, A; de Cubber, G;

Publication
Applied Mechanics and Materials

Abstract
In the event of a large crisis (think about typhoon Haiyan or the Tohoku earthquake and tsunami in Japan), a primordial task of the rescue services is the search for human survivors on the incident site. This is a complex and dangerous task, which often leads to loss of lives among the human crisis managers themselves. The introduction of unmanned search and rescue devices can offer a valuable tool to save human lives and to speed up the search and rescue process. In this context, the EU-FP7-ICARUS project [1] concentrates on the development of unmanned search and rescue technologies for detecting, locating and rescuing humans. The complex nature and difficult operating conditions of search and rescue operations pose heavy constraints on the mechanical design of the unmanned platforms. In this paper, we discuss the different user requirements which have an impact of the design of the mechanical systems (air, ground and marine robots). We show how these user requirements are obtained, how they are validated, how they lead to design specifications for operational prototypes which are tested in realistic operational conditions and we show how the final mechanical design specifications are derived from these different steps. An important aspect of all these design steps which is emphasized in this paper is to always keep the end-users in the loop in order to come to realistic requirements and specifications, ensuring the practical deployability [2] of the developed platforms. © (2014) Trans Tech Publications, Switzerland.

2014

CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control

Authors
António Paulo Moreira; Aníbal Matos; Germano Veiga;

Publication

Abstract

2014

Simulation Environment for Multi-robot Cooperative 3D Target Perception

Authors
Dias, A; Almeida, J; Dias, N; Lima, P; Silva, E;

Publication
SIMULATION, MODELING, AND PROGRAMMING FOR AUTONOMOUS ROBOTS (SIMPAR 2014)

Abstract
Field experiments with a team of heterogeneous robots require human and hardware resources which cannot be implemented in a straightforward manner. Therefore, simulation environments are viewed by the robotic community as a powerful tool that can be used as an intermediate step to evaluate and validate the developments prior to their integration in real robots. This paper evaluates a novel multi-robot heterogeneous cooperative perception framework based on monocular measurements under the MORSE robotic simulation environment. The simulations are performed in an outdoor environment using a team of Micro Aerial Vehicles (MAV) and an Unmanned Ground Vehicle (UGV) performing distributed cooperative perception based on monocular measurements. The goal is to estimate the 3D target position.

  • 115
  • 181