2025
Authors
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publication
APPLIED SOFT COMPUTING
Abstract
Traffic state prediction is critical to decision-making in various traffic management applications. Despite significant advancements in Deep Learning (DL) models, such as Long Short-Term Memory (LSTM), Graph Neural Networks (GNN), and attention-based transformer models, multi-step predictions remain challenging. The state-of-the-art models face a common limitation: the predictions' accuracy decreases as the prediction horizon increases, a phenomenon known as error accumulation. In addition, with the arrival of non-recurrent events and external noise, the models fail to maintain good prediction accuracy. Deep Reinforcement Learning (DRL) has been widely applied to diverse tasks, including optimising intersection traffic signal control. However, its potential to address multi-step traffic prediction challenges remains underexplored. This study introduces an Actor-Critic-based adapted DRL method to explore the solution to the challenges associated with multi-step prediction. The Actor network makes predictions by capturing the temporal correlations of the data sequence, and the Critic network optimises the Actor by evaluating the prediction quality using Q-values. This novel combination of Supervised Learning and Reinforcement Learning (RL) paradigms, along with non-autoregressive modelling, helps the model to mitigate the error accumulation problem and increase its robustness to the arrival of non-recurrent events. It also introduces a Denoising Autoencoder to deal with external noise effectively. The proposed model was trained and evaluated on three benchmark traffic flow and speed datasets. Baseline multi-step prediction models were implemented for comparison based on performance metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results reveal that the proposed method outperforms the baselines by achieving average improvements of 0.26 to 21.29% in terms of MAE and RMSE for up to 24 time steps of prediction length on the three used datasets, at the expense of relatively higher computational costs. On top of that, this adapted DRL approach outperforms traditional DRL models, such as Deep Deterministic Policy Gradient (DDPG), in accuracy and computational efficiency.
2025
Authors
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publication
NEURAL NETWORKS
Abstract
Accurate traffic state prediction is fundamental to Intelligent Transportation Systems, playing a critical role in optimising traffic management, improving mobility, and enhancing the efficiency of transportation networks. Traditional methods often rely on feature engineering, statistical time-series approaches, and non-parametric techniques to model the inherent complexities of traffic states, incorporating external factors such as weather conditions and accidents to refine predictions. However, the effectiveness of long-term traffic state prediction hinges on capturing spatial-temporal dependencies over extended periods. Current models face challenges in dealing with (i) high-dimensional traffic features, (ii) error accumulation for multi-step prediction, and (iii) robustness to external factors effectively. To address these challenges, this study proposes a novel model with a Dynamic Feature Embedding layer designed to transform complex data sequences into meaningful representations and a Deep Linear Projection network that refines these representations through non-linear transformations and gating mechanisms. These two features make the model more scalable when dealing with high-dimensional traffic features. The model also includes a Spatial-Temporal Positional Encoding layer to capture spatial-temporal relationships, masked multi-head attention-based encoder blocks, and a Residual Temporal Convolutional Network to process features and extract short-and long-term temporal patterns. Finally, a Time-Distributed Fully Connected Layer produces accurate traffic state predictions up to 24 timesteps into the future. The proposed architecture uses a direct strategy for multi-step modelling to help predict timesteps non-autoregressively and thus circumvents the error accumulation problem. The model was evaluated against state-of-the-art baselines using two benchmark datasets. Experimental results demonstrated the model's superiority, achieving up to 21.17% and 29.30% average improvements in Root Mean Squared Error and 3.56% and 32.80% improvements in Mean Absolute Error compared to the baselines, respectively. The Friedman Chi-Square statistical test further confirmed the significant performance difference between the proposed model and its counterparts. The adversarial perturbations and random sensor dropout tests demonstrated its good robustness. On top of that, it demonstrated good generalizability through extensive experiments. The model effectively mitigates error accumulation in multi-step predictions while maintaining computational efficiency, making it a promising solution for enhancing Intelligent Transportation Systems.
2026
Authors
Ferreira, MC; da Silva, JFL; Abrantes, D; Hora, J; Felício, S; Galvao, T; Coimbra, M;
Publication
TRANSPORT TRANSITIONS: ADVANCING SUSTAINABLE AND INCLUSIVE MOBILITY - VOL 1
Abstract
-This study focuses on providing meaningful information to vulnerable road users (VRUs) to support their objectives and perceptions while navigating urban spaces, employing a novel route planning concept. Through three focus group sessions, a comprehensive survey was conducted to identify the needs and concerns of VRUs, leading to the development of an integrated and collaborative mobile application for active mobility. The application encompasses route calculation, prioritizing safety, comfort, civic participation, and empathy. The solution aims to bridge citizen users and city managers, facilitating alerts, historical information on safety and comfort, and collaborative problem-solving and sharing of urban attractions. A prototype of the concept was developed and extensively tested by potential users, and subjective evaluation and feedback demonstrated the usefulness and added value of the integrated and collaborative approach. This study highlights the proposed solution relevance and differentiation from official alerts, user experiences, and civic participation, positioning it as a comprehensive solution for active mobility.
2025
Authors
Cunha, A; Campos, MJ; Ferreira, MC; Fernandes, CS;
Publication
JOURNAL OF INTERPROFESSIONAL CARE
Abstract
Interprofessional collaboration is an essential competency for healthcare professionals, and escape rooms have emerged as an innovative strategy to enhance teamwork and communication. The purpose of this scoping review was to identify and summarize how escape rooms are used in the teaching and enhancement of interprofessional collaboration skills. We conducted a scoping review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review (PRISMA-ScR) guidelines. A search of five databases, Scopus (R), Web of Science (R), CINAHL Complete (R), MEDLINE (R) and PsychINFO (R) was conducted for all articles until 1 January 2024. The review included 15 studies, mostly from the USA, involving a total of 2,434 participants across various healthcare professions. Key findings indicated significant improvements in group cohesion, communication, understanding of team roles, and interprofessional skills. Escape rooms can be an effective pedagogical tool in enhancing interprofessional competencies among healthcare students and professionals. Further research is needed to explore the sustainability of skills gained over time through escape rooms and to refine assessment methods.
2025
Authors
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publication
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Abstract
Acoustic monitoring of road traffic events is an indispensable element of Intelligent Transport Systems to increase their effectiveness. It aims to detect the temporal activity of sound events in road traffic auditory scenes and classify their occurrences. Current state-of-the-art algorithms have limitations in capturing long-range dependencies between different audio features to achieve robust performance. Additionally, these models suffer from external noise and variation in audio intensities. Therefore, this study proposes a spectrogram-specific transformer model employing a multi-head attention mechanism using the scaled product attention technique based on softmax in combination with Temporal Convolutional Networks to overcome these difficulties with increased accuracy and robustness. It also proposes a unique preprocessing step and a Deep Linear Projection method to reduce the dimensions of the features before passing them to the learnable Positional Encoding layer. Rather than monophonic audio data samples, stereophonic Mel-spectrogram features are fed into the model, improving the model's robustness to noise. State-of-the-art One-dimensional Convolutional Neural Networks and Long Short-term Memory models were used to compare the proposed model's performance on two well-known datasets. The results demonstrated its superior performance by achieving an improvement in accuracy of 1.51 to 3.55% compared to the studied baselines.
2025
Authors
Amarelo, A; Amarelo, B; Ferreira, MC; Fernandes, CS;
Publication
EUROPEAN JOURNAL OF ONCOLOGY NURSING
Abstract
Purpose: To aggregate, interpret, and synthesize findings from qualitative studies on patients' experiences with chemotherapy-induced peripheral neuropathy (CIPN). Methods: A qualitative metasynthesis was conducted following the thematic synthesis approach of Thomas & Harden. A systematic literature search was performed in MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection, and Scopus, including studies published up to December 2024. Two researchers independently conducted the screening and data extraction. They also independently evaluated the quality of the included studies. The data from these studies were then thematically analyzed and synthesized using Dorothea Orem's model. Results: Eighteen studies were included. Four main categories were identified: (1) Physical and Functional Impact of CIPN, (2) Emotional and Psychological Impact, (3) Coping Strategies and Self-management, and (4) Support and Barriers to Health. The findings revealed distinct self-care deficits related to functional limitations, emotional distress, and coping challenges. Utilizing Orem's Nursing Theory of Self-Care Deficit, these deficits were mapped onto different levels of nursing intervention, ranging from compensatory support to educational and self-management strategies, emphasizing an action-oriented approach in patient care. Conclusions: This metasynthesis highlights the complex and multidimensional effects of peripheral neuropathy on the lives of cancer patients. Applying Orem's model underscores the critical role of nurses in addressing healthcare system gaps, functional impairments, and long-term adaptation challenges to enhance supportive care for individuals suffering from CIPN.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.