Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Vera Miguéis

2024

Citizen engagement with sustainable energy solutions- understanding the influence of perceived value on engagement behaviors

Authors
Banica, B; Patrício, L; Miguéis, V;

Publication
ENERGY POLICY

Abstract
Citizen engagement with Sustainable Energy Solutions (SES) is considered essential for the current energy transition, since decarbonization requires individuals to shift from passive consumers to citizens actively involved with the energy system. However, citizen engagement research has remained peripheral and scattered, particularly in what regards the drivers of engagement behaviors. To address this challenge, this study examines how different forms of perceived value of SES (utilitarian, social, and environmental) influence different types of citizen engagement behaviors (information seeking, proactive managing, sharing feedback, helping other users, and advocating). To this end, we developed a quantitative study in the context of a H2020 EU project, with a sample of 456 citizens from the city of Alkmaar (the Netherlands). Our findings show that the utilitarian value of SES has a significant effect on all the engagement behaviors, except for sharing feedback. Social value has a significant influence on the more socially related engagement behaviors, such as sharing feedback, helping other users, and advocating. Finally, environmental value has an indirect effect on information seeking, proactive managing, and advocating, but only when mediated through awareness of consequences. The implications of this study should allow SES providers to design more relevant offerings and policymakers to develop better citizen engagement strategies.

2022

Service science in a world flooded with data

Authors
Teixeira, JG; Miguéis, V; Nóvoa, H; Falcão e Cunha, J;

Publication
Research Handbook on Services Management

Abstract
[No abstract available]

2024

Factors influencing the use of information and communication technologies by students for educational purposes

Authors
Silva, JC; Rodrigues, JC; Miguéis, VL;

Publication
EDUCATION AND INFORMATION TECHNOLOGIES

Abstract
Implementation of information and communication technologies (ICTs) in education is defined as the incorporation of ICTs into teaching and learning activities, both inside and outside the classroom. Despite widely studied, there is still no consensus on how it affects student performance. However, before evaluating this, it is crucial to identify which factors impact students' use of ICT for educational purposes. This understanding can help educational institutions to effectively implement ICT, potentially improving student results. Thus, adapting the conceptual framework proposed by Biagi and Loi (2013) and using the 2018 database of the Program for International Student Assessment (PISA) and a decision tree classification model developed based on CRISP-DM framework, we aim to determine which socio-demographic factors influence students' use of ICT for educational purposes. First, we categorized students according to their use of ICT for educational purposes in two situations: during lessons and outside lessons. Then, we developed a decision tree model to distinguish these categories and find patterns in each group. The model was able to accurately distinguish different levels of ICT adoption and demonstrate that ICT use for entertainment and ICT access at school and at home are among the most influential variables to predict ICT use for educational purposes. Moreover, the model showed that variables related to teaching best practices of Internet utilization at school are not significant predictors of such use. Some results were found to be country-specific, leading to the recommendation that each country adapts the measures to improve ICT use according to its context.

2011

Mining Customer Loyalty Card Programs: The Improvement of Service Levels Enabled by Innovative Segmentation and Promotions Design

Authors
Migueis, VL; Camanho, AS; Falcao e Cunha, JFE;

Publication
EXPLORING SERVICES SCIENCE

Abstract
A good relationship between companies and customers is a crucial factor of competitiveness. The improvement of service levels has become a key issue to develop and maintain a loyal relationship with customers. This paper proposes a method for promotions design for retailing companies, based on knowledge extraction from transactions records of customer loyalty cards, aiming to improve service levels and increase sales. At first, customers are segmented using k-means and then the segments' profile is characterized according to the rules extracted from a decision tree. This is followed by the identification of product associations within segments, which can base the identification of the products most suitable for customized promotions. The research reported is done in collaboration with an European retailing company.

2012

Modeling partial customer churn: On the value of first product-category purchase sequences

Authors
Migueis, VL; Van den Poel, D; Camanho, AS; Falcao e Cunha, JFE;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
Retaining customers has been considered one of the most critical challenges among those included in Customer Relationship Management (CRM), particularly in the grocery retail sector. In this context, an accurate prediction whether or not a customer will leave the company, i.e. churn prediction, is crucial for companies to conduct effective retention campaigns. This paper proposes to include in partial churn detection models the succession of first products' categories purchased as a proxy of the state of trust and demand maturity of a customer towards a company in grocery retailing. Motivated by the importance of the first impressions and risks experienced recently on the current state of the relationship, we model the first purchase succession in chronological order as well as in reverse order, respectively. Due to the variable relevance of the first customer-company interactions and of the most recent interactions, these two variables are modeled by considering a variable length of the sequence. In this study we use logistic regression as the classification technique. A real sample of approximately 75,000 new customers taken from the data warehouse of a European retail company is used to test the proposed models. The area under the receiver operating characteristic curve and 1%, 5% and 10% percentiles lift are used to assess the performance of the partial-churn prediction models. The empirical results reveal that both proposed models outperform the standard RFM model.

2012

Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences

Authors
Migueis, VL; Van den Poel, D; Camanho, AS; Falcao e Cunha, JFE;

Publication
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION

Abstract
Currently, in order to remain competitive companies are adopting customer centered strategies and consequently customer relationship management is gaining increasing importance. In this context, customer retention deserves particular attention. This paper proposes a model for partial churn detection in the retail grocery sector that includes as a predictor the similarity of the products' first purchase sequence with churner and non-churner sequences. The sequence of first purchase events is modeled using Markov for discrimination. Two classification techniques are used in the empirical study: logistic regression and random forests. A real sample of approximately 95,000 new customers is analyzed taken from the data warehouse of a European retailing company. The empirical results reveal the relevance of the inclusion of a products' sequence likelihood in partial churn prediction models, as well as the supremacy of logistic regression when compared with random forests.

  • 9
  • 10