Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Eduardo Pires

2024

YOLO-Based Tree Trunk Types Multispectral Perception: A Two-Genus Study at Stand-Level for Forestry Inventory Management Purposes

Authors
da Silva, DQ; Dos Santos, FN; Filipe, V; Sousa, AJ; Pires, EJS;

Publication
IEEE ACCESS

Abstract
Stand-level forest tree species perception and identification are needed for monitoring-related operations, being crucial for better biodiversity and inventory management in forested areas. This paper contributes to this knowledge domain by researching tree trunk types multispectral perception at stand-level. YOLOv5 and YOLOv8 - Convolutional Neural Networks specialized at object detection and segmentation - were trained to detect and segment two tree trunk genus (pine and eucalyptus) using datasets collected in a forest region in Portugal. The dataset comprises only two categories, which correspond to the two tree genus. The datasets were manually annotated for object detection and segmentation with RGB and RGB-NIR images, and are publicly available. The Small variant of YOLOv8 was the best model at detection and segmentation tasks, achieving an F1 measure above 87% and 62%, respectively. The findings of this study suggest that the use of extended spectra, including Visible and Near Infrared, produces superior results. The trained models can be integrated into forest tractors and robots to monitor forest genus across different spectra. This can assist forest managers in controlling their forest stands.

2022

Prediction of Ventricular Tachyarrhythmia Using Deep Learning

Authors
Barbosa, D; Solteiro Pires, EJ; Leite, A; Moura Oliveira, PBd;

Publication
Wireless Mobile Communication and Healthcare - 11th EAI International Conference, MobiHealth 2022, Virtual Event, November 30 - December 2, 2022, Proceedings

Abstract
Ventricular tachyarrhythmia (VTA), mainly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the major causes of sudden cardiac death in the world. This work uses deep learning, more precisely, LSTM and biLSTM networks to predict VTA events. The Spontaneous Ventricular Tachyarrhythmia Database from PhysioNET was chosen, which contains 78 patients, 135 VTA signals, and 135 control rhythms. After the pre-processing of these signals and feature extraction, the classifiers were able to predict whether a patient was going to suffer a VTA event or not. A better result using a biLSTM was obtained, with a 5-fold-cross-validation, reaching an accuracy of 96.30%, 94.07% of precision, 98.45% of sensibility, and 96.17% of F1-Score. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2023

Modeling and Forecasting Photovoltaic Power Production

Authors
Ribeiro, D; Cerveira, A; Solteiro Pires, EJ; Baptista, J;

Publication
International Conference on Electrical, Computer and Energy Technologies, ICECET 2023, Cape Town, South Africa, November 16-17, 2023

Abstract
As the world's population grows, there is a need to find new sources of energy that are more sustainable. Photovoltaic (PV) energy is one of the renewable energy sources (RES) expected to have the greatest margin for growth in the near future. Given their intermittency, RES bring uncertainty and instability to the management of the power system, therefore it is essential to predict their behavior for different time frames. This paper aims to find the most effective forecasting method for PV energy production that could be applied to different time frames. PV energy production is directly dependent on solar radiation and temperature. Several forecasting approaches are proposed in this paper. A multiple linear regression (MLR) model is proposed to predict the monthly energy production based on the climatic parameters of the previous year. Different approaches are proposed based on first predicting the temperature and radiation and then applying the PV mathematical models to predict the produced energy. Three methods are proposed to predict the climatic parameters: using the average values, the additive decomposition, or the Holt-Winters method. Comparing the errors of the four proposed forecasting methods, the best model is the Holt-Winters, which presents smaller errors for radiation, temperature, and produced energy. This method is close to additive decomposition. © 2023 IEEE.

2023

Myocardial Infarction Prediction Using Deep Learning

Authors
Cruz, C; Leite, A; Pires, EJS; Pereira, LT;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Myocardial infarction, known as heart attack, is one of the leading causes of world death. It occurs when blood heart flow is interrupted by part of coronary artery occlusion, causing the ischemic episode to last longer, creating a change in the patient’s ECG. In this work, a method was developed for predicting patients with MI through Frank 3-lead ECG extracted from Physionet’s PTB ECG Diagnostic Database and using instantaneous frequency and spectral entropy to extract features. Two neural networks were applied: Long Short-Term Memory and Bi-Long Short-Term Memory, obtaining a better result with the first one, with an accuracy of 78%. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2022

ENHANCING HIGHER EDUCATION TUTORING WITH ARTIFICIAL INTELLIGENCE INFERENCE

Authors
Silva, B; Reis, A; Sousa, J; Solteiro Pires, EJ; Barroso, J;

Publication
EDULEARN Proceedings - EDULEARN22 Proceedings

Abstract

2023

Wind Farm Cable Connection Layout Optimization Using a Genetic Algorithm and Integer Linear Programming

Authors
Pires, EJS; Cerveira, A; Baptista, J;

Publication
COMPUTATION

Abstract
This work addresses the wind farm (WF) optimization layout considering several substations. It is given a set of wind turbines jointly with a set of substations, and the goal is to obtain the optimal design to minimize the infrastructure cost and the cost of electrical energy losses during the wind farm lifetime. The turbine set is partitioned into subsets to assign to each substation. The cable type and the connections to collect wind turbine-produced energy, forwarding to the corresponding substation, are selected in each subset. The technique proposed uses a genetic algorithm (GA) and an integer linear programming (ILP) model simultaneously. The GA creates a partition in the turbine set and assigns each of the obtained subsets to a substation to optimize a fitness function that corresponds to the minimum total cost of the WF layout. The fitness function evaluation requires solving an ILP model for each substation to determine the optimal cable connection layout. This methodology is applied to four onshore WFs. The obtained results show that the solution performance of the proposed approach reaches up to 0.17% of economic savings when compared to the clustering with ILP approach (an exact approach).

  • 12
  • 20