Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Manuel Santos Silva

2002

Quasi-periodic gaits in multi-legged robots

Authors
Silva, MF; Machado, JAT; Lopes, AM;

Publication
CLIMBING AND WALKING ROBOTS

Abstract
This paper studies quasi-periodic gaits of multi-legged robot locomotion systems based on the analysis of the dynamic model. The purpose is to determine the system performance during walking and the best strategy to overcome an obstacle. For that objective the robot prescribed motion is characterized in terms of several locomotion and obstacle variables. In this perspective, we formulate three performance measures of the walking robot namely, the mean absolute power, the mean power lost in the joint actuators and the mean force of the interface body-legs per walking distance. A set of model-based experiments reveals the influence of the obstacle position and dimensions in the proposed indices.

2001

Energy analysis of multi-legged locomotion systems

Authors
Silva, MF; Machado, JAT; Lopes, AME;

Publication
CLIMBING AND WALKING ROBOTS

Abstract
This paper presents the energy analysis of periodic gaits for multi-legged locomotion systems. The main purpose is to determine the system performance during walking and the best set of locomotion variables that minimizes a cost function related to energy. For that objective, the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, maximum foot clearance, link lengths, body and legs mass and cycle time. In this work, we formulate three indices to quantitatively measure the performance of the walking robot namely the mean absolute power, the mean power dispersion and the mean power lost in the joint actuators. A set of experiments reveals the influence of the locomotion variables in the proposed indices.

2002

Performance analysis of multi-legged systems

Authors
Silva, MF; Machado, JAT; Lopes, AM;

Publication
2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS

Abstract
This paper studies periodic gaits of multi-legged robot locomotion systems based on dynamic models. The purpose is to determine the system performance during walking and the best set of locomotion variables. For that objective the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, foot clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In this perspective, we formulate four performance measures of the walking robot namely, the locomobility of the foot, the mean absolute power, the mean power dispersion and the mean power lost in the joint actuators per walking distance. A set of model-based experiments reveals the influence of the locomotion variables in the proposed indices.

2023

Insect Farming – An EPS@ISEP 2022 Project

Authors
Copinet, B; Flügge, F; Margetich, LC; Vandepitte, M; Petrache, PL; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
Intensive cattle farming as a means of protein production contributes with the direct emission of greenhouse gases and the indirect contamination of soil and water. The public awareness towards this issue is growing in western cultures, leading to the stagnation of meat consumption and to the willingness to adopt alternative sustainable sources of protein. A solution is to farm insects as they present a reduced environmental impact and constitute a well-known source of protein. However, for westerners, eating insects implies a cultural change as they are still seen as dirty and disgusting. In 2022, a team of five EPS@ISEP students chose to design a solution for this problem followed by the assembly and test of the corresponding proof-of-concept prototype. They decided to design a home farming kit to grow mealworms driven by ethical, sustainable and the market needs. Exploring the insect life-cycle, the kit provides protein for humans and animals, chitin for soil bacteria and frass for plants. It can also be used as an educational tool for children to learn about sustainability, social responsibility and insect life-cycles, helping to overtake the cultural barrier against insect eating from a young age. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2023

Urban Exploration Game – An EPS@ISEP 2022 Project

Authors
Blaschke, L; Blauw, B; Herlange, C; Pyciak, A; Zschocke, J; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
Tourists nowadays tend to avoid tourist traps and are looking for engaging ways to explore cities in the limited time they have. Standard options to explore cities seldom offer a combination between efficiency and fun. Furthermore, a search for an exploration city app returns an unlimited supply of lookalike websites and apps, all claiming to be the best. This paper reports the development of QRioCity, an efficient and exciting way to explore cities, by the “Dragonics” student team. QRioCity offers users the option to sign up for a playful tour through the city of Porto using a public kiosk with an interactive touchscreen. There is no limit to the number of teams playing simultaneously nor there is need to provide personal data. The teams are led through the city using clues and are proposed assignments, like scanning QR codes, to earn points. At the end of the game, every team receives discount coupons for local shops or stores depending on their score, even when they play alone. This way QRioCity helps tourists enjoying the local city life while offering municipalities a chance to strengthen their local economy. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2023

Development of a Collaborative Robotic Platform for Autonomous Auscultation

Authors
Lopes, D; Coelho, L; Silva, MF;

Publication
APPLIED SCIENCES-BASEL

Abstract
Listening to internal body sounds, or auscultation, is one of the most popular diagnostic techniques in medicine. In addition to being simple, non-invasive, and low-cost, the information it offers, in real time, is essential for clinical decision-making. This process, usually done by a doctor in the presence of the patient, currently presents three challenges: procedure duration, participants' safety, and the patient's privacy. In this article we tackle these by proposing a new autonomous robotic auscultation system. With the patient prepared for the examination, a 3D computer vision sub-system is able to identify the auscultation points and translate them into spatial coordinates. The robotic arm is then responsible for taking the stethoscope surface into contact with the patient's skin surface at the various auscultation points. The proposed solution was evaluated to perform a simulated pulmonary auscultation in six patients (with distinct height, weight, and skin color). The obtained results showed that the vision subsystem was able to correctly identify 100% of the auscultation points, with uncontrolled lighting conditions, and the positioning subsystem was able to accurately position the gripper on the corresponding positions on the human body. Patients reported no discomfort during auscultation using the described automated procedure.

  • 38
  • 40