2003
Authors
Fonseca, N; Costa, VS; Silva, F; Camacho, R;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE
Abstract
2003
Authors
Fonseca, N; Rocha, R; Camacho, R; Silva, F;
Publication
INDUCTIVE LOGIC PROGRAMMING, PROCEEDINGS
Abstract
This work aims at improving the scalability of memory usage in Inductive Logic Programming systems. In this context, we propose two efficient data structures: the Trie, used to represent lists and clauses; and the RL-Tree, a novel data structure used to represent the clauses coverage. We evaluate their performance in the April system using well known datasets. Initial results show a substantial reduction in memory usage without incurring extra execution time overheads. Our proposal is applicable in any ILP system.
2004
Authors
Fonseca, N; Costa, VS; Silva, F; Camacho, R;
Publication
INDUCTIVE LOGIC PROGRAMMING, PROCEEDINGS
Abstract
ILP systems induce first-order clausal theories performing a search through very large hypotheses spaces containing redundant hypotheses. The generation of redundant hypotheses may prevent the systems from finding good models and increases the time to induce them. In this paper we propose a classification of hypotheses redundancy and show how expert knowledge can be provided to an ILP system to avoid it. Experimental results show that the number of hypotheses generated and execution time are reduced when expert knowledge is used to avoid redundancy.
2005
Authors
Fonseca, NA; Silva, F; Camacho, R;
Publication
INDUCTIVE LOGIC PROGRAMMING, PROCEEDINGS
Abstract
It is well known by Inductive Logic Programming (ILP) practioners that ILP systems usually take a long time to find valuable models (theories). The problem is specially critical for large datasets, preventing ILP systems to scale up to larger applications. One approach to reduce the execution time has been the parallelization of ILP systems. In this paper we overview the state-of-the-art on parallel ILP implementations and present work on the evaluation of some major parallelization strategies for ILP. Conclusions about the applicability of each strategy are presented.
2017
Authors
Rheinbay, E; Nielsen, MM; Abascal, F; Tiao, G; Hornshøj, H; Hess, JM; Pedersen, RI; Feuerbach, L; Sabarinathan, R; Madsen, T; Kim, J; Mularoni, L; Shuai, S; Lanzós, A; Herrmann, C; Maruvka, YE; Shen, C; Amin, SB; Bertl, J; Dhingra, P; Diamanti, K; Gonzalez-Perez, A; Guo, Q; Haradhvala, NJ; Isaev, K; Juul, M; Komorowski, J; Kumar, S; Lee, D; Lochovsky, L; Liu, EM; Pich, O; Tamborero, D; Umer, HM; Uusküla-Reimand, L; Wadelius, C; Wadi, L; Zhang, J; Boroevich, KA; Carlevaro-Fita, J; Chakravarty, D; Chan, CW; Fonseca, NA; Hamilton, MP; Hong, C; Kahles, A; Kim, Y; Lehmann, K; Johnson, TA; Kahraman, A; Park, K; Saksena, G; Sieverling, L; Sinnott-Armstrong, NA; Campbell, PJ; Hobolth, A; Kellis, M; Lawrence, MS; Raphael, B; Rubin, MA; Sander, C; Stein, L; Stuart, J; Tsunoda, T; Wheeler, DA; Johnson, R; Reimand, J; Gerstein, MB; Khurana, E; López-Bigas, N; Martincorena, I; Pedersen, JS; Getz, G;
Publication
Abstract
2017
Authors
Calabrese, C; Davidson, NR; Fonseca, NA; He, Y; Kahles, A; Lehmann, K; Liu, F; Shiraishi, Y; Soulette, CM; Urban, L; Demircioglu, D; Greger, L; Li, S; Liu, D; Perry, MD; Xiang, L; Zhang, F; Zhang, J; Bailey, P; Erkek, S; Hoadley, KA; Hou, Y; Kilpinen, H; Korbel, JO; Marin, MG; Markowski, J; Nandi, T; Pan-Hammarström, Q; Pedamallu, CS; Siebert, R; Stark, SG; Su, H; Tan, P; Waszak, SM; Yung, C; Zhu, S; Awadalla, P; Creighton, CJ; Meyerson, M; Ouellette, BF; Wu, K; Yang, H; Brazma, A; Brooks, AN; Göke, J; Rätsch, G; Schwarz, RF; Stegle, O; Zhang, Z;
Publication
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.