Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Nuno Fonseca

2011

Interactive Discriminative Mining of Chemical Fragments

Authors
Fonseca, NA; Pereira, M; Costa, VS; Camacho, R;

Publication
INDUCTIVE LOGIC PROGRAMMING, ILP 2010

Abstract
Structural activity prediction is one of the most important tasks in chemoinformatics. The goal is to predict a property of interest given structural data on a set of small compounds or drugs. Ideally, systems that address this task should not just be accurate, but they should also be able to identify an interpretable discriminative structure which describes the most discriminant structural elements with respect to some target. The application of ILP in an interactive software for discriminative mining of chemical fragments is presented in this paper. In particular, it is described the coupling of an ILP system with a molecular visualisation software that allows a chemist to graphically control the search for interesting patterns in chemical fragments. Furthermore, we show how structural information, such as rings, functional groups such as carboxyls, amines, methyls, and esters, are integrated and exploited in the search.

2008

Induction as a search procedure

Authors
Konstantopoulos, S; Camacho, R; Fonseca, NA; Costa, VS;

Publication
Artificial Intelligence for Advanced Problem Solving Techniques

Abstract
This chapter introduces inductive logic programming (ILP) from the perspective of search algorithms in computer science. It first briefly considers the version spaces approach to induction, and then focuses on inductive logic programming: from its formal definition and main techniques and strategies, to priors used to restrict the search space and optimized sequential, parallel, and stochastic algorithms. The authors hope that this presentation of the theory and applications of inductive logic programming will help the reader understand the theoretical underpinnings of ILP, and also provide a helpful overview of the State-of-the-Art in the domain. © 2008, IGI Global.

2012

Conceptual clustering of multi-relational data

Authors
Fonseca, NA; Santos Costa, V; Camacho, R;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
"Traditional" clustering, in broad sense, aims at organizing objects into groups (clusters) whose members are "similar" among them and are "dissimilar" to objects belonging to the other groups. In contrast, in conceptual clustering the underlying structure of the data together with the description language which is available to the learner is what drives cluster formation, thus providing intelligible descriptions of the clusters, facilitating their interpretation. We present a novel conceptual clustering system for multi-relational data, based on the popular k?-?medoids algorithm. Although clustering is, generally, not straightforward to evaluate, experimental results on several applications show promising results. Clusters generated without class information agree very well with the true class labels of cluster's members. Moreover, it was possible to obtain intelligible and meaningful descriptions of the clusters. © 2012 Springer-Verlag Berlin Heidelberg.

2011

Assessing the Effect of 2D Fingerprint Filtering on ILP-Based Structure-Activity Relationships Toxicity Studies in Drug Design

Authors
Camacho, R; Pereira, M; Costa, VS; Fonseca, NA; Simoes, CJV; Brito, RMM;

Publication
5TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2011)

Abstract
The rational development of new drugs is a complex and expensive process. A myriad of factors affect the activity of putative candidate molecules in vivo and the propensity for causing adverse and toxic effects is recognised as the major hurdle behind the current "target-rich, lead-poor" scenario. Structure-Activity Relationship studies, using relational Machine Learning algorithms, proved already to be very useful in the complex process of rational drug design. However, a typical problem with those studies concerns the use of available repositories of previously studied molecules. It is quite often the case that those repositories are highly biased since they contain lots of molecules that are similar to each other. This results from the common practice where an expert chemist starts off with a lead molecule, presumed to have some potential, and then introduces small modifications to produce a set of similar molecules. Thus, the resulting sets have a kind of similarity bias. In this paper we assess the advantages of filtering out similar molecules in order to improve the application of relational learners in Structure-Activity Relationship (SAR) problems to predict toxicity. Furthermore, we also assess the advantage of using a relational learner to construct comprehensible models that may be quite valuable to bring insights into the workings of toxicity.

2010

Predicting the Start of Protein alpha-Helices Using Machine Learning Algorithms

Authors
Camacho, R; Ferreira, R; Rosa, N; Guimaraes, V; Fonseca, NA; Costa, VS; de Sousa, M; Magalhaes, A;

Publication
ADVANCES IN BIOINFORMATICS

Abstract

2009

Comparative Study of Classification Algorithms Using Molecular Descriptors in Toxicological DataBases

Authors
Pereira, M; Costa, VS; Camacho, R; Fonseca, NA; Simoes, C; Brito, RMM;

Publication
ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS

Abstract
The rational development of new drugs is a complex and expensive process, comprising several steps. Typically, it starts by screening databases of small organic molecules for chemical structures with potential of binding to a target receptor and prioritizing the most promising ones. Only a few of these will be selected for biological evaluation and further refinement through chemical synthesis. Despite the accumulated knowledge by pharmaceutical companies that continually improve the process of finding new drugs, a myriad of factors affect the activity of putative candidate molecules in vivo and the propensity for causing adverse and toxic effects is recognized as the major hurdle behind the current "target-rich, lead-poor" scenario. In this study we evaluate the use of several Machine Learning algorithms to find useful rules to the elucidation and prediction of toxicity using ID and 2D molecular descriptors. The results indicate that: i) Machine Learning algorithms can effectively use ID molecular descriptors to construct accurate and simple models; ii) extending the set of descriptors to include 2D descriptors improve the accuracy of the models.

  • 15
  • 20