Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Inês Dutra

2022

Quantum transfer learning for breast cancer detection

Authors
Azevedo, V; Silva, C; Dutra, I;

Publication
QUANTUM MACHINE INTELLIGENCE

Abstract
One of the areas with the potential to be explored in quantum computing (QC) is machine learning (ML), giving rise to quantum machine learning (QML). In an era when there is so much data, ML may benefit from either speed, complexity or smaller amounts of storage. In this work, we explore a quantum approach to a machine learning problem. Based on the work of Mari et al., we train a set of hybrid classical-quantum neural networks using transfer learning (TL). Our task was to solve the problem of classifying full-image mammograms into malignant and benign, provided by BCDR. Throughout the course of our work, heatmaps were used to highlight the parts of the mammograms that were being targeted by the networks while evaluating different performance metrics. Our work shows that this method may hold benefits regarding the generalization of complex data; however, further tests are needed. We also show that, depending on the task, some architectures perform better than others. Nonetheless, our results were superior to those reported in the state-of-the-art (accuracy of 84% against 76.9%, respectively). In addition, experiments were conducted in a real quantum device, and results were compared with the classical and simulator.

2021

Similarity of Football Players Using Passing Sequences

Authors
Barbosa, A; Ribeiro, P; Dutra, I;

Publication
MLSA@PKDD/ECML

Abstract
Association football has been the subject of many research studies. In this work we present a study on player similarity using passing sequences extracted from games from the top-5 European football leagues during the 2017/2018 season. We present two different approaches: first, we only count the motifs a player is involved in; then we also take into consideration the specific position a player occupies in each motif. We also present a new way to objectively judge the quality of the generated models in football analytics. Our results show that the study of passing sequences can be used to study player similarity with relative success.

2022

Map-Optimize-Learn: Predicting Cardiac Pathology in Children and Teenagers with a Deep Learning Based Tabular Learning Method

Authors
Neto, MTRS; Dutra, I; Mollinetti, MAF;

Publication
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
Convolutional Neural Networks (CNN) have been successfully applied to images, text and audio, but their performance are not so good when applied to feature-based tabular data. Exceptions are works such as TabNet and DeepInsight, which employ end-to-end approaches. In this work, we propose an alternative way of using CNNs to model tabular data where knowledge is extracted from the feature space before being introduced to the network. Our strategy, Map-Optimize-Learn (MOL), changes the shape representation of samples in order to produce suitable input data for the CNN architecture. The strategy is applied to a real-world scenario of children and teenagers with cardiac pathology and compared against baseline and state of the art Machine Learning (ML) algorithms for tabular datasets. Preliminary results suggest that the strategy has potential to improve prediction quality of tabular data over end-to-end CNN methods and classical ML methods.

2020

Message from the General Chairs: SBAC-PAD 2020

Authors
Areias, M; Barbosa, J; Dutra, I;

Publication
Proceedings - Symposium on Computer Architecture and High Performance Computing

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IX

Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (9)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track and Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VIII

Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (8)

Abstract

  • 9
  • 19