1997
Authors
Torgo, L; Gama, J;
Publication
Intell. Data Anal.
Abstract
This article presents an alternative approach to the problem of regression. The methodology we describe allows the use of classification algorithms in regression tasks. From a practical point of view this enables the use of a wide range of existing machine learning (ML) systems in regression problems. In effect, most of the widely available systems deal with classification. Our method works as a pre-processing step in which the continuous goal variable values are discretised into a set of intervals. We use misclassification costs as a means to reflect the implicit ordering among these intervals. We describe a set of alternative discretisation methods and, based on our experimental results, justify the need for a search-based approach to choose the best method. The discretisation process is isolated from the classification algorithm, thus being applicable to virtually any existing system. The implemented system (RECLA) can thus be seen as a generic pre-processing tool. We have tested RECLA with three different classification systems and evaluated it in several regression data sets. Our experimental results confirm the validity of our search-based approach to class discretisation, and reveal the accuracy benefits of adding misclassification costs. © 1997 Elsevier Science B.Y.
2011
Authors
Suzuki, E; Sebag, M; Ando, S; Balcazar, JL; Billard, A; Bratko, I; Bredeche, N; Gama, J; Grunwald, P; Iba, H; Kersting, K; Peters, J; Washio, T;
Publication
Proceedings - IEEE International Conference on Data Mining, ICDM
Abstract
2011
Authors
Khan, L; Pechenizkiy, M; Zliobaite, I; Agrawal, C; Bifet, A; Delany, SJ; Dries, A; Fan, W; Gabrys, B; Gama, J; Gao, J; Gopalkrishnan, V; Holmes, G; Katakis, I; Kuncheva, L; Van Leeuwen, M; Masud, M; Menasalvas, E; Minku, L; Pfahringer, B; Polikar, R; Rodrigues, PP; Tsoumakas, G; Tsymbal, A;
Publication
Proceedings - IEEE International Conference on Data Mining, ICDM
Abstract
2000
Authors
Gama, J; Brazdil, P;
Publication
MACHINE LEARNING
Abstract
Using multiple classifiers for increasing learning accuracy is an active research area. In this paper we present two related methods for merging classifiers. The first method, Cascade Generalization, couples classifiers loosely. It belongs to the family of stacking algorithms. The basic idea of Cascade Generalization is to use sequentially the set of classifiers, at each step performing an extension of the original data by the insertion of new attributes. The new attributes are derived from the probability class distribution given by a base classifier. This constructive step extends the representational language for the high level classifiers, relaxing their bias. The second method exploits tight coupling of classifiers, by applying Cascade Generalization locally. At each iteration of a divide and conquer algorithm, a reconstruction of the instance space occurs by the addition of new attributes. Each new attribute represents the probability that an example belongs to a class given by a base classifier. We have implemented three Local Generalization Algorithms. The first merges a linear discriminant with a decision tree, the second merges a naive Bayes with a decision tree, and the third merges a linear discriminant and a naive Bayes with a decision tree. All the algorithms show an increase of performance, when compared with the corresponding single models. Cascade also outperforms other methods for combining classifiers, like Stacked Generalization, and competes well against Boosting at statistically significant confidence levels.
2007
Authors
Cardoso, MGMS; Gama, J; Carvalho, A;
Publication
Journal of Retailing and Consumer Services
Abstract
2001
Authors
Gama, J;
Publication
Advances in Intelligent Data Analysis, 4th International Conference, IDA 2001, Cascais, Portugal, September 13-15, 2001, Proceedings
Abstract
In this paper we present and evaluate a new algorithm for supervised learning regression problems. The algorithm combines a univariate regression tree with a linear regression function by means of constructive induction. When growing the tree, at each internal node, a linear-regression function creates one new attribute. This new attribute is the instantiation of the regression function for each example that fall at this node. This new instance space is propagated down through the tree. Tests based on those new attributes correspond to an oblique decision surface. Our approach can be seen as a hybrid model that combines a linear regression known to have low variance with a regression tree known to have low bias. Our algorithm was compared against to its components, and two simplified versions, and M5 using 16 benchmark datasets. The experimental evaluation shows that our algorithm has clear advantages with respect to the generalization ability when compared against its components and competes well against the state-of-art in regression trees. © Springer-Verlag Berlin Heidelberg 2001.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.