2019
Authors
Miranda, V; Teixeira, L; Pereira, J;
Publication
2019 20th International Conference on Intelligent System Application to Power Systems, ISAP 2019
Abstract
This paper presents a method to identify the status (open or closed) of breakers in network branches, in the absence of status signal or electric measurements on the branch including the breaker. Indirect power measurements from the SCADA are combined to form a 2D image array, which is fed into a Convolutional Neural Network. The image construction is based on ranking measurements with the Cauchy-Schwarz divergence between two signal distributions (for breaker open and closed). The success rate obtained with this technique is close to 100% in the IEEE testbed adopted. © 2019 IEEE.
2021
Authors
Carreira P.J.G.; Santos J.M.G.M.; Pires L.; Ferreira V.G.M.; Almeno L.; Pinheiro S.; Neves E.; Azevedo L.; Costa N.; Gomes F.; Gouveia C.; Zanghi E.; Pereira J.; Simões N.; Tadeu A.; Coimbra A.; Oliveira J.; Aparício A.;
Publication
Iet Conference Proceedings
Abstract
Future Secondary Substation (SS) design requires a more integrated approach, from the building envelope design, electromechanically equipments to the advanced monitoring and control, taking into account new technical, environmental and economic requirements. The main objective of the project is to develop an integrated solution for the SSS, considering innovative solutions for the building envelope and thermal behavior, power transformer and switching equipment as well as monitoring, protection and control system. This paper presents the specification of future SS developed in Portuguese project NEXTSTEP - Next Distribution SubsTation ImprovEd Platform and describes its mains innovative solution and advanced control functionalities.
2022
Authors
Silva R.; Gouveia C.; Carvalho L.; Pereira J.;
Publication
IEEE PES Innovative Smart Grid Technologies Conference Europe
Abstract
This paper presents a model predictive control (MPC) framework for battery energy storage systems (BESS) management considering models for battery degradation, system efficiency and V-I characteristics. The optimization framework has been tested for microgrids with different renewable generation and load mix considering several operation strategies. A comparison for one-year simulations between the proposed model and a naïve BESS model, show an increase in computation times that still allows the application of the framework for real-time control. Furthermore, a trade-off between financial revenue and reduced BESS degradation was evaluated for the yearly simulation, considering the degradation model proposed. Results show that a conservative BESS usage strategy can have a high impact on the asset's lifetime and on the expected system revenues, depending on factors such as the objective function and the degradation threshold considered.
2025
Authors
Pereira, JC; Gouveia, CS; Portelinha, RK; Viegas, P; Simões, J; Silva, P; Dias, S; Rodrigues, A; Pereira, A; Faria, J; Pino, G;
Publication
IET Conference Proceedings
Abstract
The purpose of an Advanced Distribution Management System (ADMS) is to consolidate the key operational functions of a SCADA system, Outage management System (OMS) and Distribution Management System (DMS) into a unified platform. This includes several key functions: SCADA operation, incidents and outages management, teams and field works management including switching operations and advanced applications for network analysis and optimization. The new generation of ADMS also implements a predictive operation strategy to enhance real-time operator responsiveness. The innovative aspects related to the new generation of ADMS built on top of an open architecture will be presented in this paper. © The Institution of Engineering & Technology 2025.
2025
Authors
Viegas, P; Bairrão, D; Gonçalves, L; Pereira, JC; Carvalho, LM; SimÕes, J; Silva, P; Dias, S;
Publication
IET Conference Proceedings
Abstract
A Renewable Energy Management System (REMS) is designed to enhance the operation and efficiency of renewable energy assets, such as wind and solar power, by addressing their inherent variability. Through integration with Supervisory Control and Data Acquisition (SCADA) systems, REMS facilitates real-time adjustments and forecast-based decisions, enabling grid security, optimizing energy dispatch, and maximizing economic benefits. This paper introduces a versatile active power control methodology for renewable energy plants, capable of operating across various time scales to address technical and market-driven requirements. The proposed framework processes inputs from power system measurements to generate forecasts using two distinct approaches, optimizing setpoints for energy dispatch and control processes. Four optimization methods—merit order, weighted allocation, proportional allocation, and linear optimization—are employed to maximize power utilization while adhering to system constraints. The approach is validated for two control intervals: 4 seconds, representing rapid response for converter-based resources, and 15 minutes, simulating broader operational adjustments for reserve provision programs. This dynamic and scalable control framework demonstrates its potential to enhance the management, efficiency, and sustainability of renewable energy systems. © The Institution of Engineering & Technology 2025.
2025
Authors
Tavares, B; Soares, F; Pereira, J; Gouveia, C;
Publication
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
Flexibility markets are emerging across Europe to improve the efficiency and reliability of distribution networks. This paper presents a methodology that integrates local flexibility markets into network maintenance scheduling, optimizing the process by contracting flexibility to avoid technical issues under the topology defined to operate the network during maintenance. A meta-heuristic approach, Evolutionary Particle Swarm Optimization (EPSO), is used to determine the optimal network topology.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.