2023
Authors
Ribeiro, M; Nunes, I; Castro, L; Costa-Santos, C; Henriques, TS;
Publication
FRONTIERS IN PUBLIC HEALTH
Abstract
IntroductionPerinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. ObjectivesThis exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. MethodsSingle gestations data from a retrospective unicentric study from Centro Hospitalar e Universitario do Porto de Sao Joao (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. ResultsThe data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. ConclusionBoth BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).
2023
Authors
Ferreira, J; Barbosa, A; Ribeiro, P;
Publication
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2
Abstract
2023
Authors
Swacha, J; Queiros, R; Paiva, JC;
Publication
INFORMATION
Abstract
As gamification spreads to new areas, new applications are being developed and the interest in evaluating gamified systems continues to grow. To date, however, no one has comprehensively approached this topic: multiple evaluation dimensions and measures have been proposed and applied without any effort to organize them into a full gamut of tools for the multi-dimensional evaluation of gamified systems. This paper addresses this gap by proposing GATUGU, a set of six perspectives of evaluation of gamified systems: General effects of gamification, Area-specific effects of gamification, Technical quality of gamified systems, Use of gamified systems, Gamefulness of gamified systems, and User experience of gamified systems. For each perspective, GATUGU indicates the relevant dimensions of evaluation, and, for each dimension, one measure is suggested. GATUGU does not introduce any new measurement tools but merely recommends one of the available tools for each dimension, considering their popularity and ease of use. GATUGU can guide researchers in selecting gamification system evaluation perspectives and dimensions and in finding adequate measurement tools. Thanks to conforming to GATUGU, the published gamification system evaluation results will become easier to compare and to perform various kinds of meta-analyses on them.
2023
Authors
David, F; Guimarães, N; Figueira, Á;
Publication
Procedia Computer Science
Abstract
2023
Authors
Paiva, JC; Figueira, Á; Leal, JP;
Publication
Electronics
Abstract
2023
Authors
Ferreira, IA; Godina, R; Pinto, A; Pinto, P; Carvalho, H;
Publication
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The role of new technologies such as additive manufacturing and blockchain technology in designing and implementing circular economy ecosystems is not a trivial issue. This study aimed to understand if blockchain technology can be an enabler tool for developing additive symbiotic networks. A real case study was developed regarding a circular economy ecosystem in which a fused granular fabrication 3D printer is used to valorize polycarbonate waste. The industrial symbiosis network comprised four stakeholders: a manufacturing company that produces polycarbonate waste, a municipality service responsible for the city waste management, a start-up holding the 3D printer, and a non-profit store. It was identified a set of six requirements to adopt the blockchain technology in an additive symbiotic network, bearing in mind the need to have a database to keep track of the properties of the input material for the 3D printer during the exchanges, in addition to the inexistence of mechanisms of trust or cooperation between well-established industries and the additive manufacturing industry. The findings suggested a permissioned blockchain to support the implementation of the additive symbiotic network, namely, to enable the physical transactions (quantity and quality of waste material PC sheets) and monitoring and reporting (additive manufacturing technology knowledge and final product's quantity and price).Future research venues include developing blockchain-based systems that enhance the development of ad-ditive symbiotic networks.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.