Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ricardo Teixeira Sousa

2017

Comparison Between Co-training and Self-training for Single-target Regression in Data Streams using AMRules

Authors
Sousa, R; Gama, J;

Publication
Proceedings of the Workshop on IoT Large Scale Learning from Data Streams co-located with the 2017 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2017), Skopje, Macedonia, September 18-22, 2017.

Abstract
A comparison between co-training and self-training method for single-target regression based on multiples learners is performed. Data streaming systems can create a significant amount of unlabeled data which is caused by label assignment impossibility, high cost of labeling or labeling long duration tasks. In supervised learning, this data is wasted. In order to take advantaged from unlabeled data, semi-supervised approaches such as Co-training and Self-training have been created to benefit from input information that is contained in unlabeled data. However, these approaches have been applied to classification and batch training scenarios. Due to these facts, this paper presents a comparison between Co-training and Self-learning methods for single-target regression in data streams. Rules learning is used in this context since this methodology enables to explore the input information. The experimental evaluation consisted of a comparison between the real standard scenario where all unlabeled data is rejected and scenarios where unlabeled data is used to improve the regression model. Results show evidences of better performance in terms of error reduction and in high level of unlabeled examples in the stream. Despite this fact, the improvements are not expressive.

2015

Enabling IIoT IP backbones with real-time guarantees

Authors
Sousa, R; Pedreiras, P; Goncalves, P;

Publication
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA

Abstract
Industrial Internet and Industrial Internet of Things are emerging concepts that concern the use of Internet technologies on industrial environments. The main objective of such architectural visions is allowing a tight and seamless integration between all the functional units and layers that compose industrial processes, from the lowest levels (e.g. field-level devices such as sensors and actuators) to the higher layers, including management, logistics and maintenance. This kind of architecture promises, among other advantages, improving efficiency and flexibility, reduce installation and maintenance costs and reduce unplanned downtime. However, industrial processes often encompass functionalities like closed-loop control of physical processes that are highly critical and have strict timeliness requirements. These requirements are not satisfied by normal Ethernet-based systems. Standards such as IEEE AVB and TSN are addressing this problem, enhancing the real-time properties of Ethernet. However, considering the information presently available, such standards still present some limitations and inefficiencies. This paper reports the extension of HaRTES, an Ethernet-based real-time architecture originally developed for use at the lower layers of industrial scenarios, with MAC Bridge standard functionalities, to make it capable of being integrated on Industrial Internet of Things frameworks. The paper also presents preliminary results obtained with a prototype realization of the extended HaRTES switch. © 2015 IEEE.

2016

Online Multi-label Classification with Adaptive Model Rules

Authors
Sousa, R; Gama, J;

Publication
ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2016

Abstract
The interest on online classification has been increasing due to data streams systems growth and the need for Multi-label Classification applications have followed the same trend. However, most of classification methods are not performed on-line. Moreover, data streams produce huge amounts of data and the available processing resources may not be sufficient. This work-in-progress paper proposes an algorithm for Multi-label Classification applications in data streams scenarios. The proposed method is derived from multi-target structured regressor AMRules that produces models using subsets of output attributes (output specialization strategy). Performance tests were conducted where the operation modes global, local and subset approaches of the proposed method were compared to each other and to others online multi-label classifiers described in the literature. Three datasets of real scenarios were used for evaluation. The results indicate that the subset specialization mode is competitive in comparison to local and global approaches and to other online multi-label classifiers.

2014

The harmonic and noise information of the glottal pulses in speech

Authors
Sousa, R; Ferreira, A; Alku, P;

Publication
BIOMEDICAL SIGNAL PROCESSING AND CONTROL

Abstract
This paper presents an algorithm, in the context of speech analysis and pathologic/dysphonic voices evaluation, which splits the signal of the glottal excitation into harmonic and noise components. The algorithm uses a harmonic and noise splitter and a glottal inverse filtering. The combination of these two functionalities leads to an improved estimation of the glottal excitation and its components. The results demonstrate this improvement of estimates of the glottal excitation in comparison to a known inverse filtering method (IAIF). These results comprise performance tests with synthetic voices and application to natural voices that show the waveforms of harmonic and noise components of the glottal excitation. This enhances the glottal information retrieval such as waveform patterns with physiological meaning.

2017

Co-training Semi-supervised Learning for Single-Target Regression in Data Streams Using AMRules

Authors
Sousa, R; Gama, J;

Publication
Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017, Warsaw, Poland, June 26-29, 2017, Proceedings

Abstract

2018

Multi-label classification from high-speed data streams with adaptive model rules and random rules

Authors
Sousa, R; Gama, J;

Publication
Progress in Artificial Intelligence

Abstract

  • 1
  • 2