2023
Authors
Pasandidehpoor, M; Mendes Moreira, J; Rahman Mohammadpour, S; Sousa, RT;
Publication
Handbook of Smart Energy Systems
Abstract
2024
Authors
Pinto, J; Esteves, V; Tavares, S; Sousa, R;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE
Abstract
The power transformer is one of the key components of any electrical grid, and, as such, modern day industrialization activities require constant usage of the asset. This increases the possibility of failures and can potentially diminish the lifespan of a power transformer. Dissolved gas analysis (DGA) is a technique developed to quantify the existence of hydrocarbon gases in the content of the power transformer oil, which in turn can indicate the presence of faults. Since this process requires different chemical analysis for each type of gas, the overall cost of the operation increases with number of gases. Thus said, a machine learning methodology was defined to meet two simultaneous objectives, identify gas subsets, and predict the remaining gases, thus restoring them. Two subsets of equal or smaller size to those used by traditional methods (Duval's triangle, Roger's ratio, IEC table) were identified, while showing potentially superior performance. The models restored the discarded gases, and the restored set was compared with the original set in a variety of validation tasks.
2025
Authors
Mazarei, A; Sousa, R; Mendes Moreira, J; Molchanov, S; Ferreira, HM;
Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
Outlier detection is a widely used technique for identifying anomalous or exceptional events across various contexts. It has proven to be valuable in applications like fault detection, fraud detection, and real-time monitoring systems. Detecting outliers in real time is crucial in several industries, such as financial fraud detection and quality control in manufacturing processes. In the context of big data, the amount of data generated is enormous, and traditional batch mode methods are not practical since the entire dataset is not available. The limited computational resources further compound this issue. Boxplot is a widely used batch mode algorithm for outlier detection that involves several derivations. However, the lack of an incremental closed form for statistical calculations during boxplot construction poses considerable challenges for its application within the realm of big data. We propose an incremental/online version of the boxplot algorithm to address these challenges. Our proposed algorithm is based on an approximation approach that involves numerical integration of the histogram and calculation of the cumulative distribution function. This approach is independent of the dataset's distribution, making it effective for all types of distributions, whether skewed or not. To assess the efficacy of the proposed algorithm, we conducted tests using simulated datasets featuring varying degrees of skewness. Additionally, we applied the algorithm to a real-world dataset concerning software fault detection, which posed a considerable challenge. The experimental results underscored the robust performance of our proposed algorithm, highlighting its efficacy comparable to batch mode methods that access the entire dataset. Our online boxplot method, leveraging dataset distribution to define whiskers, consistently achieved exceptional outlier detection results. Notably, our algorithm demonstrated computational efficiency, maintaining constant memory usage with minimal hyperparameter tuning.
2024
Authors
Colonna, JG; Fares, AA; Duarte, M; Sousa, R;
Publication
INTELLIGENT SYSTEMS WITH APPLICATIONS
Abstract
Process Mining offers a powerful framework for uncovering, analyzing, and optimizing real-world business processes. Petri nets provide a versatile means of modeling process behavior. However, traditional methods often struggle to effectively compare complex Petri nets, hindering their potential for process enhancement. To address this challenge, we introduce PetriNet2Vec, an unsupervised methodology inspired by Doc2Vec. This approach converts Petri nets into embedding vectors, facilitating the comparison, clustering, and classification of process models. We validated our approach using the PDC Dataset, comprising 96 diverse Petri net models. The results demonstrate that PetriNet2Vec effectively captures the structural properties of process models, enabling accurate process classification and efficient process retrieval. Specifically, our findings highlight the utility of the learned embeddings in two key downstream tasks: process classification and process retrieval. In process classification, the embeddings allowed for accurate categorization of process models based on their structural properties. In process retrieval, the embeddings enabled efficient retrieval of similar process models using cosine distance. These results demonstrate the potential of PetriNet2Vec to significantly enhance process mining capabilities.
2025
Authors
da Silva, JP; Nogueira, AR; Pinto, J; Curral, M; Alves, AC; Sousa, R;
Publication
EXPERT SYSTEMS
Abstract
Integrating Industry 4.0 and Quality 4.0 optimises manufacturing through IoT and ML, improving processes and product quality. The primary challenge involves identifying patterns in computer numerical control (CNC) machining time-series data to boost manufacturing quality control. The proposed solution involves an experimental study comparing one-class and binary classification algorithms. This study aims to classify time-series data from CNC turning machines, offering insight into monitoring and adjusting tool wear to maintain product quality. The methodology entails extracting spectral features from time-series data to train both one-class and binary classification algorithms, assessing their effectiveness and computational efficiency. Although certain models consistently outperform others, determining the best performing is not possible, as a trade-off between classification and computational performance is observed, with gradient boosting standing out for effectively balancing both aspects. Thus, the choice between one-class and binary classification ultimately relies on dataset's features and task objectives.
2020
Authors
Azevedo, AC; Delgado, JMPQ; Guimarães, AS; Ribeiro, I; Sousa, R;
Publication
Hygrothermal Behaviour and Building Pathologies - Building Pathology and Rehabilitation
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.