2015
Authors
Machado, M; Machado, N; Gouvinhas, I; Cunha, M; de Almeida, JMMM; Barros, AIRNA;
Publication
FOOD ANALYTICAL METHODS
Abstract
The phenolic compound concentration of olives and olive oil is typically quantified using HPLC; however, this process is expensive and time consuming. The purpose of this work was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy combined with chemometrics, as a rapid tool for the quantitative prediction of phenol content and antioxidant activity in olive fruits and oils from "Cobran double dagger osa" cultivar. Normalized spectral data using standard normal variate (SNV) and first and second Savitzky-Golay derivatives were used to build calibration models based on principal component regression (PCR) and on partial least squares regression (PLS-R), the performance of both models have been also compared. It was shown the possibility of establishing optimized regression models using the combined frequency regions of 3050-2750 and 1800-790 cm(-1) instead of the full mid-infrared spectrum was shown. It was concluded that, in general, the first derivative of data and PLS-R models offered enhanced results. Low root-mean-square error (RMSE) and high correlation coefficients (R (2)) for the calibration and for the validation sets were obtained.
2015
Authors
Gouvinhas, I; de Almeida, JMMM; Carvalho, T; Machado, N; Barros, AIRNA;
Publication
FOOD CHEMISTRY
Abstract
A methodology based on Fourier transform infrared (FTIR) spectroscopy, combined with multivariate analysis methods, was applied in order to monitor extra virgin olive oils produced from three distinct cultivars on different maturation stages. For the first time, this kind of methodology is used for the simultaneous discrimination of the maturation stage, and different cultivars. Principal component analysis and discriminant analysis were utilised to create a model for the discrimination of olive oil samples. Partial least squares regression was employed to design calibration models for the determination of chemical parameters. The performance of these models was based on the multiple coefficient of determination (R-2), the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV). The prediction models for the chemical parameters resulted in a R-2 ranged from 0.93 to 0.99, a RMSEC ranged from 1% to 4% and a RMSECV from 2% to 5%. It has been shown that this kind of approach allows to distinguish the different cultivars, and to clearly discern the different maturation stages, in each one of these distinct cultivars. Furthermore, the results demonstrated that FTIR spectroscopy in tandem with chemometric techniques allows the creation of viable and accurate models, suitable for correlating the data collected by FTIR spectroscopy, with the chemical composition of the EVOOs, obtained by standard methods.
2015
Authors
Gouvinhas, I; Machado, N; Carvalho, T; de Almeida, JMMM; Barros, AIRNA;
Publication
TALANTA
Abstract
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination ( > 0.933). Both the R-2, and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process.
2013
Authors
Machado, NFL; Dias, MM; Marques, MP; Otero, JC;
Publication
FEBS JOURNAL
Abstract
2013
Authors
Carvalho, C; Machado, N; Santos, MS; Oliveira, CR; Moreira, PI;
Publication
FEBS JOURNAL
Abstract
2023
Authors
Yang, CY; Menz, C; Reis, S; Machado, N; Santos, JA; Torres-Matallana, JA;
Publication
AGRONOMY-BASEL
Abstract
Vine phenology modelling is increasingly important for winegrowers and viticulturists. Model calibration is often required before practical applications. However, when multiple models and optimization methods are applied for different varieties, it is rarely known which factor tends to mostly affect the calibration results. We mainly aim to investigate the main source of the variability in the modelling errors for the flowering timings of two important varieties of vine in the Douro Demarcated Region (DDR) of Portugal; this is based on five phenology model simulations that use optimal parameters and that are estimated by three optimization algorithms (MLE, SA and SCE-UA). Our results indicate that the main source of the variability in calibration can be affected by the initially assumed parameter boundary. Restricting the initial parameter distribution to a narrow range impedes the algorithm from exploring the full parameter space and searching for optimal parameters. This can lead to the largest variation in different models. At an identified appropriate boundary, the difference between the two varieties represents the largest source of uncertainty, while the choice of algorithm for calibration contributes least to the overall uncertainty. The smaller variability among different models or algorithms (tools for analysis) compared to between different varieties could indicate the overall reliability of the calibration. All optimization algorithms show similar results in terms of the obtained goodness-of-fit: the RMSE (MAE) is 5-6 (4-5) days with a negligible mean bias and moderately good R-2 (0.5-0.6) for the ensemble median predictor. Nevertheless, a similar predictive performance can result from differently estimated parameter values, due to the equifinality or multi-modal issue in which different parameter combinations give similar results. This mainly occurs for models with a non-linear structure compared to those with a near-linear one. Yet, the former models are found to outperform the latter ones in predicting the flowering timing of the two varieties in the DDR. Overall, our findings highlight the importance of carefully defining the initial parameter boundary and decomposing the total variance of prediction errors. This study is expected to bring new insights that will help to better inform users about the importance of choice when these factors are involved in calibration. Nonetheless, the importance of each factor can change depending on the specific situation. Details of how the optimization methods are applied and of the continuous model improvement are important.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.