Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2025

Improving community-based electricity markets regulation: A holistic multi-objective optimization framework

Authors
Costa, VBF; Soares, T; Bitencourt, L; Dias, BH; Deccache, E; Silva, BMA; Bonatto, B; , WF; Faria, AS;

Publication
RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Abstract
Community-based electricity markets, which are defined as groups of members that share common interests in renewable distributed generation, allow prosumers to embrace more active roles by opening up several opportunities for trading electricity. At the same time, such markets may favor conventional consumers by allowing them to choose cheaper electricity providers. Due to trends in power sector modernization, community-based electricity markets are of great research interest, and there are already some associated models. However, there is a research gap in searching for integrated and holistic approaches that go beyond economic aspects, consider social and environmental aspects, and assume the balanced co-existence of community-based and conventional markets. This work fills this critical research gap by adapting/applying the optimized tariff model, Bass diffusion model, life cycle assessment, and multi-objective optimization to the context of community-based markets. Results indicate that favoring conventional markets in the short term and community-based markets in the medium term is beneficial. Moreover, regulated tariffs should increase slightly in the short/medium-term to accommodate DG growth. Additionally, community-based markets can decrease electricity expenses by around 13.6 % considering the market participants. Thus, such markets can be significantly beneficial in mitigating energy poverty.

2025

Local flexibility markets based on grid segmentation

Authors
Retorta F.; Mello J.; Gouveia C.; Silva B.; Villar J.; Troncia M.; Chaves-Ávila J.P.;

Publication
Utilities Policy

Abstract
Local flexibility markets are a promising solution to aid system operators in managing the network as it faces the growth of distributed resources and the resulting impacts on voltage control, among other factors. This paper presents and simulates a proposal for an intra-day local flexibility market based on grid segmentation. The design provides a market-based solution for distribution system operators (DSOs) to address near-real-time grid issues. The grid segmentation computes the virtual buses that represent each zone and the sensitivity indices that approximate the impact of activating active power flexibility in the buses within the zone. This approach allows DSOs to manage and publish their flexibility needs per zone and enables aggregators to offer flexibility by optimizing their resource portfolios per zone. The simulation outcomes allow for the assessment of market performance according to the number of zones computed and show that addressing overloading and voltage control through zonal approaches can be cost-effective and counterbalance minor errors compared to node-based approaches.

2025

Delivering energy from hybridised offshore wind-wave parks considering electricity and hydrogen options: an optimisation approach

Authors
Varotto, S; Kazemi-Robati, E; Silva, B;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
Research around the co-location of different renewable energy technologies in offshore sites is increasing due to the potential complementarity of different sources that could decrease the power output variability, and increase reliability. However, further decrease of the power fluctuations and higher economic profitability could be achieved with energy storage. In this work, a model is developed for optimal sizing and energy management of energy storage and delivery solutions to accommodate the hybridisation of an offshore wind park. A set of options is considered for energy storage: the integration of a battery energy storage system (BESS), hydrogen production for direct sale or hydrogen/fuel cell system. For energy delivery, an expansion of the transmission cable, hydrogen pipeline or transportation by ship is evaluated. The case study used to test the model is the offshore farm WindFloat Atlantic located near the coast of Viana do Castelo, Portugal, which is proposed to be hybridised with wave energy converters (WEC). Sensitivity analyses are performed on possible components' cost variations, hydrogen shipping frequency or sale price. The results show that hydrogen production from the studied offshore hybrid park is profitable, and the transmission through submarine pipeline is competitive with electrical connections by cable. The highest profitability is achieved when pipeline and cable expansion are combined. Hydrogen transportation by ship also appears profitable, in the eventuality that additional submarine transmission facilities cannot be installed.

2025

A Nonlinear Control Allocation Strategy for Dual Half Bridge Power Converters

Authors
de Castro, R; Araujo, RE; Brembeck, J;

Publication
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Abstract
This work focuses on designing nonlinear control algorithms for dual half-bridge converters (DHBs). We propose a two-layer controller to regulate the current and voltage of the DHB. The first layer utilizes a change in the control variable to obtain a quasi-linear representation of the DHB, allowing for the application of simple linear controllers to regulate current and power flow. The second layer employs a nonlinear control allocation algorithm to select control actions that fulfill (pseudo) power setpoints specified by the first control layer; it also minimizes peak-to-peak currents in the DHB and enforces voltage balance constraints. We apply the DHB and this new control strategy to manage power flow in a hybrid energy storage system comprising of a battery and supercapacitors. Numerical simulation results demonstrate that, in comparison with state-of-the-art approaches, our control algorithm is capable of maintaining good transient behavior over a wide operating range, while reducing peak-to-peak current by up to 80%.

2025

Towards a Digital Model for Emulation of an Electrolyzer in Real-Time: An Initial Study

Authors
Mariano Afonso João; Rui Esteves Araújo;

Publication
2025 9th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE)

Abstract

2025

A multi-objective stochastic optimization framework for government-run community energy storage systems auctions

Authors
Anuradha K.B.J.; Iria J.; Mediwaththe C.P.;

Publication
Journal of Energy Storage

Abstract
This paper proposes a multi-objective stochastic optimization framework that can be used by governments to run auctions and select the best community energy storage system (CESS) projects to support. The framework enables CESS providers and energy community members to equitably benefit from the economic value generated by CESSs. The auction accepts offers from competing CESS providers that constitute the data of the CESS location, size, install time, technology, provider, investment cost, and energy trading price. The auction is run by a government agency which selects CESS projects that maximize the economic benefits and distribute them equitably among CESS providers and community members. The multi-objective stochastic optimization accounts for the multi-year uncertainties of photovoltaic (PV) generation, real and reactive energy consumption, energy trading prices, and PV installations. We exploit the Monte Carlo simulation and scenario trees to model the aforementioned uncertainties. The K-Means clustering method is used to reduce the number of scenarios, and thereby, lessen the computational burden of the optimization problem. Our experiments on an Australian low-voltage network with a community of prosumers and consumers demonstrate that government financial support can accelerate the installation of CESSs and enhance their business viability. This can be achieved by boosting the economic benefits shared between CESS providers and communities and ensuring these benefits are distributed equitably. Also, our experiments show that the economic benefits of all stakeholders are further improved with a high growth of the number of PV installations, and a slight reduction of energy import and export prices over the planning period.

  • 3
  • 355