2012
Authors
Madureira, A; Seca, L; Pecas Lopes, J;
Publication
CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid
Abstract
2012
Authors
Moreira, CL; Lopes, JAP;
Publication
Power Systems
Abstract
MicroGrids comprise low voltage distribution systems with distributed energy sources, storage devices and controllable loads, operated connected to the main power network or autonomously, in a controlled coordinated way. In case of MicroGrids autonomous operation, management of instantaneous active power balance imposes unique challenges. Traditionally, power grids are supplied by sources having rotating masses and these are regarded as essential for the inherent stability of the system. In contrast, MicroGrids are dominated by inverter interfaced sources that are inertia-less, but do offer the possibility of a more flexible operation. When a forced or scheduled islanding takes place in a MicroGrid, it must have the ability to operate stably and autonomously, requiring the use of suitable control strategies. The MicroGrid power sources can also be exploited in order to locally promote a service restoration strategy following a general blackout. A sequence of actions for the black start procedure is also presented and it is expected to be an advantage in terms of reliability as a result from the presence of very large amounts of dispersed generation in distribution grids. © Springer-Verlag Berlin Heidelberg 2012.
2012
Authors
Leite da Silva, AML; Nascimento, LC; da Rosa, MA; Issicaba, D; Pecas Lopes, JAP;
Publication
IEEE TRANSACTIONS ON SMART GRID
Abstract
Wind and solar power are well known intermittent power sources with high availability uncertainties. Hence, whenever they are integrated to distribution systems, these power sources can increase significantly the complexity of system operation. This paper presents an impact analysis of distributed energy resources integration on distribution systems, focusing mainly on reliability aspects. Therefore, an interesting algorithm to correctly determine the amount of capacity that may be transferred to other feeders is presented and discussed, taken into consideration the presence of distributed generation. The methodology is tested in a typical Brazilian distribution system, assuming the integration of a diesel-based combined heat and power unit, wind turbines, and solar panels. The results provide general insights regarding the benefits of applying distributed generation to alleviate load transfer restrictions.
2012
Authors
Issicaba, D; Pecas Lopes, JAP; da Rosa, MA;
Publication
IEEE TRANSACTIONS ON POWER SYSTEMS
Abstract
This paper presents an adequacy and security evaluation of electric power distribution systems with distributed generation. For this accomplishment, bulk power system adequacy and security evaluation concepts are adapted to distribution system applications. The evaluation is supported by a combined discrete-continuous simulation model which emulates the distribution system operation. This model generates a sequence of operation states which are evaluated from a steady-state perspective using AC power flow computations. Frequency and voltage stability are also assessed using dynamic simulation in order to verify the feasibility of islanded operation. Simulation results are presented for the RBTS-BUS2-F1 as well as an actual feeder from the South of Brazil. The results emphasize the need to consider adequacy and security aspects in the distribution system assessments, mainly due to the ongoing integration of distributed energy resources.
2012
Authors
Varajao, D; Araujo, RE; Moreira, C; Lopes, JP;
Publication
38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012)
Abstract
The Smart Vehicle-to-Grid Project at INESC TEC is currently studying the application of matrix converters to implement an isolated bidirectional AC-DC power converter using a single power conversion stage to provide a high-frequency link between the grid and vehicle. The single-stage structure and bidirectional power flow make the matrix converter an attractive solution for the charging applications of electric vehicles. A very brief overview of the matrix converter and its modulation strategy is presented, followed by detailed analysis. The power conversion system performance is investigated in terms of the switching commutation, input filter and input power factor. Simulations and experimental results of a prototype are also presented to further validate the proposed topology and operating principle.
2012
Authors
Madureira, AG; Pecas Lopes, JAP;
Publication
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
In this paper, a proposal for an ancillary services (AS) market framework addressing voltage control in multi-microgrid systems is presented. This var market proposal for MV distribution systems can be adopted to involve Distributed Generation (DG) units and microgrids in AS provision. In the approach that was developed each player is given the opportunity to submit its bid to the var market and the market settlement is performed using an Optimal Power Flow (OPF) formulation in order to minimize the price of reactive power purchased by the Distribution System Operator (DSO). This market is based on var capacity use and runs daily after the scheduling of the generation units for a period of operation of one clay.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.